簡易檢索 / 詳目顯示

研究生: 謝美娟
Mei-Chuan Hsieh
論文名稱: 以浮除法分離水中之鈷與鋰
Flotation Separation of Cobalt and Lithium in Aqueous Solution
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 劉志成
Jhy-Chern Liu
王丞浩
Chen-Hao Wang
何豐謀
Feng-Mao Ho
陳嘉明
Jia-Ming Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 87
中文關鍵詞: 浮除鋰電池分離界面活性劑
外文關鍵詞: Cobalt, Flotation, Lithium, Lithium-ion batteries (LIBs), Separation, Surfactant
相關次數: 點閱:189下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鈷(Co)是鋰電池(LIBs)陰極材料中重要的元素,鋰電池的應用日漸興盛使鈷的需求迅速增長。從廢棄鋰電池中回收鈷和鋰(Li)已成為一項重要的任務。本研究的目標是藉由浮除分離法來探討混合溶液中鈷與鋰的分離效果,此混合溶液為模擬廢棄鋰電池回收過程中所產生的溶液。鈷的回收率受到界面活性劑的種類和界面活性劑濃度的影響。溶液中含有10 mg/L的鈷和10 mg/L的鋰,在pH值 5.5、鈷與界面活性劑的莫爾比為1:8、氮氣流速為40 mL/min的情況下使用十二烷基硫酸鈉(SDS)、十二烷基苯磺酸鈉(SDBS)和十六烷基硫酸鈉(SHS)分別可回收98.1%、90%和62.63%的鈷。使用辛基硫酸鈉(SOS)無法有效的回收鈷。陰離子界面活性劑通過靜電作用力吸附帶正電的鈷離子,並產生泡沫使鈷離子與水溶液分離。而鋰離子與陰離子界面活性劑之間的靜電作用力弱導致鋰無法與水溶液分離。在pH值9時有98%的鈷沉澱形成Co(OH)2,其表面帶正電仍然可以被陰離子界面活性劑吸附並且有高的鈷回收率。鈷的回收率隨著氣體流量的增加而增加,高氣體流量能將更多的氣體引入浮除柱,從而提供更多機會使界面活性劑吸附在氣泡上並產生更多的泡沫以提高鈷的回收率。初步結果表明使用浮除分離可以從回收廢棄鋰電池產生的溶液中回收鈷和鋰。


Cobalt (Co) is a key element in the cathode material of lithium–ion batteries (LIBs). With the rise in LIBs applications, demand of Co continues to grow rapidly. Recycling of Co and Li from spent LIBs has become an important task. The objective of the study is to investigate flotation separation of Co and Li in mixed solution, which simulates the solutions generated in the recycling of spent LIBs. Recovery efficiency of Co was affected by type of surfactant and surfactant concentration. Solution contained 10 mg/L of Co and 10 mg/L of Li, at pH 5.5, molar ratio ([Co]:[surfactant]) of 1:8, and 40 mL/min of N2, 98.1%, 90%, and 62.63% of Co was recovered when use sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium hexadecyl sulfate (SHS), respectively. Sodium octyl sulfate (SOS) was not an effective collector. Cationic species of Co became adsorbed on anionic surfactant via electrostatic interaction, and was separated from aqueous solution with foams. Li was hardly separated from solution because of its weak electrostatic interaction with anionic surfactant. High recovery efficiency of Co was found at pH 9, because 98% of Co precipitated as Co(OH)2, whose surface was positively charged and anionic surfactant could become adsorbed. Recovery efficiency of Co increased with increasing N2 flow rate. High gas flow rate induces more gas bubbles into the flotation column and therefore provides more opportunities for surfactant to adsorb on gas bubbles and produces more foams to improve Co recovery. Preliminary results showed flotation separation could potentially be used in recycling Co and Li from spent LIBs.

摘要......i ABSTRACT......ii ACKNOWLEDGEMENT......iii TABLE OF CONTENTS......iv LIST OF FIGURES......vii LIST OF TABLES......ix CHAPTER 1......1-1 1.1 Background......1-1 1.2 Objectives of study......1-2 CHAPTER 2......2-1 2.1 Cobalt......2-1 2.1.1 Cobalt demand.....2-1 2.1.2 Recycling techniques for cobalt......2-3 2.2 Flotation......2-5 2.2.1 Principle of flotation......2-5 2.2.2 Bubble generation methods......2-6 2.2.2.1 Dispersed air flotation......2-6 2.2.2.2 Dissolved air flotation......2-6 2.2.2.3 Electrolytic flotation......2-6 2.2.3 Flotation techniques......2-7 2.2.3.1 Ion flotation......2-7 2.2.3.2 Precipitate flotation......2-10 2.2.3.3 Foam flotation......2-12 2.2.4 Flotation parameters......2-12 2.2.4.1 Concentration of flotation reagent......2-12 2.2.4.2 pH......2-13 2.2.4.3 Bubble size......2-13 .2.4.4.4 Gas flow rate......2-14 2.2.4.5 Ionic strength......2-14 2.3 Surfactant......2-15 CHAPTER 3......3-1 3.1 Materials......3-1 3.2 Equipment and Instruments......3-2 3.3 Experimental framework and procedures......3-4 3.4 Experimental methods......3-5 3.4.1 Flotation experiment......3-5 3.4.2 ICP-AES analysis......3-6 3.4.3 Speciation determination......3-7 3.4.4 Zeta potential measurement......3-7 CHAPTER 4......4-1 4.1 Effect of surfactant type......4-1 4.2 Anionic surfactants......4-4 4.2.1 Single-component solution......4-6 4.2.1.1 Cobalt solution......4-6 4.2.1.2 Lithium solution......4-8 4.2.2 Mixed solution......4-9 4.2.2.1 Effect of surfactant concentration......4-9 4.2.2.2 Effect of pH......4-14 4.2.2.3 Effect of N2 flow rate......4-23 4.3 Kinetic study......4-25 4.4 Separation of cobalt and lithium......4-28 CHAPTER 5......5-1 5.1 Conclusions......5-1 5.2 Recommendations......5-2 REFERENCES......R-1 APPENDIX A......A-1

Abdel-Khalek, N., Omar, A., & Barakat, Y. (1999). Relationship of structure to properties of some anionic surfactants as collectors in the flotation process. 1. Effect of chain length. Journal of Chemical & Engineering Data, 44(1), 133-137.
Abed, F. I., & Mohammed, A. A. (2011). Removal of copper ion from wastewater by flotation. Journal of Engineering, 17(6), 1483-1491.
Awual, M. R., Ismael, M., & Yaita, T. (2014). Efficient detection and extraction of cobalt(II) from lithium ion batteries and wastewater by novel composite adsorbent. Sensors and Actuators B: Chemical, 191, 9-18.
Bahri, Z., Rezai, B., & Kowsari, E. (2016). Evaluation of cupferron on the selective separation of gallium from aluminum by flotation: The separation mechanism. Minerals Engineering, 98, 194-203.
Bengt, K., Krister, H., & Björn, L. (2014). Surface Chemistry of Surfactants and Polymers. Chichester, West Sussex: John Wiley & Sons, Inc.
Berthier, J. (2013). Micro-Drops and Digital Microfluidics (Second Edition). Amsterdam; London: William Andrew.
Briceño-Ahumada, Z., Maldonado, A., Impéror-Clerc, M., & Langevin, D. (2016). On the stability of foams made with surfactant bilayer phases. Soft matter, 12(5), 1459-1467.
Brum, M. C., & Oliveira, J. F. (2007). Removal of humic acid from water by precipitate flotation using cationic surfactants. Minerals Engineering, 20(9), 945-949.
Chen, X., Ma, H., Luo, C., & Zhou, T. (2017). Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Journal of Hazardous Materials, 326, 77-86.
de Medeiros, A. R. S., & Baltar, C. A. M. (2018). Importance of collector chain length in flotation of fine particles. Minerals Engineering, 122, 179-184.
Dimitrios, Z., N., P. E., K., L. N., & A., M. K. (2011). Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. Journal of Chemical Technology & Biotechnology, 86(3), 335-344.
Doyle, F. M. (2003). Ion flotation—its potential for hydrometallurgical operations. International Journal of Mineral Processing, 72(1), 387-399.
Edzwald, J. K. (1995). Principles and applications of dissolved air flotation. Water Science and Technology, 31(3), 1-23.
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418.
Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., & Du, M. (2010). Electro-coagulation–flotation process for algae removal. Journal of Hazardous Materials, 177(1), 336-343.
Garg, S., Wang, L., & Schenk, P. M. (2014). Effective harvesting of low surface-hydrophobicity microalgae by froth flotation. Bioresource Technology, 159, 437-441.
Gelardi, G., Mantellato, S., Marchon, D., Palacios, M., Eberhardt, A. B., & Flatt, R. J. (2016). Science and Technology of Concrete Admixtures. Cambridge, UK: Woodhead Publishing.
Gottberg, A., Morris, J., Pollard, S., Mark-Herbert, C., & Cook, M. (2006). Producer responsibility, waste minimisation and the WEEE Directive: Case studies in eco-design from the European lighting sector. Science of The Total Environment, 359(1), 38-56.
He, L.-P., Sun, S.-Y., Song, X.-F., & Yu, J.-G. (2017a). Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Management, 64, 171-181.
He, Y., Zhang, T., Wang, F., Zhang, G., Zhang, W., & Wang, J. (2017b). Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation. Journal of Cleaner Production, 143, 319-325.
Hernández-Expósito, A., Chimenos, J. M., Fernández, A. I., Font, O., Querol, X., Coca, P., & García Peña, F. (2006). Ion flotation of germanium from fly ash aqueous leachates. Chemical Engineering Journal, 118(1), 69-75.
Hoseinian, F. S., Irannajad, M., & Nooshabadi, A. J. (2015). Ion flotation for removal of Ni(II) and Zn(II) ions from wastewaters. International Journal of Mineral Processing, 143, 131-137.
Hoseinian, F. S., Rezai, B., Kowsari, E., & Safari, M. (2018). Kinetic study of Ni(II) removal using ion flotation: Effect of chemical interactions. Minerals Engineering, 119, 212-221.
Huang, C. J., & Liu, J. C. (1999). Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Research, 33(16), 3403-3412.

Huang, Y., Chai, W., Han, G., Wang, W., Yang, S., & Liu, J. (2016). A perspective of stepwise utilisation of Bayer red mud: Step two—extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation. Journal of Hazardous Materials, 307, 318-327.
Hughes, B. R., & Dahman, Y. (2016). Fabrication and Self-Assembly of Nanobiomaterials. Amsterdam: William Andrew.
Huibers, P. D. (1999). Quantum-chemical calculations of the charge distribution in ionic surfactants. Langmuir, 15(22), 7546-7550.
Iizuka, A., Yamashita, Y., Nagasawa, H., Yamasaki, A., & Yanagisawa, Y. (2013). Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation. Separation and Purification Technology, 113, 33-41.
Jauregi, P., & Dermiki, M. (2011). Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries. Oxford: Woodhead.
Johansson, I., & Somasundaran, P. (2007). Handbook for Cleaning/Decontamination of Surfaces. Amsterdam; Paris: Elsevier.
Kang, J., Chen, C., Sun, W., Tang, H., Yin, Z., Liu, R., Nguyen, A. V. (2017). A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid. Journal of Cleaner Production, 151, 419-426.
Koutlemani, M. M., Mavros, P., Zouboulis, A. I., & Matis, K. A. (1994). Recovery of Co2+ ions from aqueous solutions by froth flotation. Separation Science and Technology, 29(7), 867-886.
Kumar, V., & Gilbert, T. (1972). Sodium alkyl sulfates as maximum suppressors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 40(2), 419-429.
Laamanen, C. A., Ross, G. M., & Scott, J. A. (2016). Flotation harvesting of microalgae. Renewable and Sustainable Energy Reviews, 58, 75-86.
Labidi, J., Pèlach, M. À., Turon, X., & Mutjé, P. (2007). Predicting flotation efficiency using neural networks. Chemical Engineering and Processing: Process Intensification, 46(4), 314-322.
Lacour, S., Van Hille, R. P., Peterson, K., & Lewis, A. E. (2005). Comparison of simulators for process and aqueous chemistry modeling. AIChE journal, 51(8), 2358-2368.
Langevin, D. (2017). Aqueous foams and foam films stabilised by surfactants. Gravity-free studies. Comptes Rendus Mécanique, 345(1), 47-55.
Li, R., Yang, W., Su, Y., Li, Q., Gao, S., & Shang, J. K. (2014). Ionic potential: A general material criterion for the selection of highly efficient arsenic adsorbents. Journal of Materials Science & Technology, 30(10), 949-953.
Liu, Z., & Doyle, F. M. (2001). A thermodynamic approach to ion flotation. II. Metal ion selectivity in the SDS–Cu–Ca and SDS–Cu–Pb systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1), 93-103.
Liu, Z., & Doyle, F. M. (2009). Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien). Langmuir, 25(16), 8927-8934.
Lobacheva, O., Dzhevaga, N., & Danilov, A. (2016). The method of removal yttrium (III) and ytterbium (III) from dilute aqueous solutions. Journal of Ecological Engineering, 17(2), 38-42.
Manousaki, E., Psillakis, E., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 38(17), 3751-3759.
Matis, K. A., & Mavros, P. (1991). Recovery of metals by ion flotation from dilute aqueous solutions. Separation and Purification Methods, 20(1), 1-48.
Matis, K. A., & Zouboulis, A. I. (2001). Flotation techniques in water technology for metals recovery: The impact of speciation. Separation Science and Technology, 36(16), 3777-3800.
Medina, B. Y., Torem, M. L., & de Mesquita, L. M. S. (2005). On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol. Minerals Engineering, 18(2), 225-231.
Meng, Q., Zhang, Y., & Dong, P. (2017). Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Management, 64, 214-218.
Micheau, C., Schneider, A., Girard, L., & Bauduin, P. (2015). Evaluation of ion separation coefficients by foam flotation using a carboxylate surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 470, 52-59.
Mohammed, A. A., Ebrahim, S. E., & Alwared, A. I. (2013). Flotation and sorptive-flotation methods for removal of lead ions from wastewater using SDS as surfactant and barley husk as biosorbent. Journal of Chemistry, (Vol. 2013).
Muhammad, M. T., & Khan, M. N. (2018). Eco-friendly, biodegradable natural surfactant (Acacia Concinna): An alternative to the synthetic surfactants. Journal of Cleaner Production, 188, 678-685.
Nancharaiah, Y. V., Mohan, S. V., & Lens, P. N. L. (2016). Biological and bioelectrochemical recovery of critical and scarce metals. Trends in Biotechnology, 34(2), 137-155.
Paria, S., & Khilar, K. C. (2004). A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Advances in Colloid and Interface Science, 110(3), 75-95.
Pavlovska, G., Stafilov, T., & Čundeva, K. (2015). Determination of iron in drinking water after its flotation concentration by two new dithiocarbamate collectors. Journal of Environmental Science and Health, Part A, 50(13), 1386-1392.
Pązik, P., Chmielewski, T., J. Glass, H., & Kowalczuk, P. (2016). World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore. In E3S Web of Conferences (Vol. 8, p. 01063). EDP Sciences.
Polat, H., & Erdogan, D. (2007). Heavy metal removal from waste waters by ion flotation. Journal of Hazardous Materials, 148(1), 267-273.
Prakash, R., Majumder, S. K., & Singh, A. (2018). Flotation technique: Its mechanisms and design parameters. Chemical Engineering and Processing - Process Intensification, 127, 249-270.
Rafighi, P., Yaftian, M. R., & Noshiranzadeh, N. (2010). Solvent extraction of cobalt(II) ions; cooperation of oximes and neutral donors. Separation and Purification Technology, 75(1), 32-38.
Riahi, K., Chaabane, S., & Thayer, B. B. (2017). A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. Journal of Saudi Chemical Society, 21, S143-S152.
Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. Hoboken, N.J.: John Wiley & Sons.
Rubin, A. J., & Johnson, J. D. (1967). Effect of pH on ion and precipitate flotation systems. Analytical Chemistry, 39(3), 298-302.
Rubio, J., Souza, M. L., & Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15(3), 139-155.
Saint-Jalmes, A., Peugeot, M.-L., Ferraz, H., & Langevin, D. (2005). Differences between protein and surfactant foams: microscopic properties, stability and coarsening. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 263(1-3), 219-225.
Salmani, M. H., Davoodi, M., Ehrampoush, M. H., Ghaneian, M. T., & Fallahzadah, M. H. (2013). Removal of cadmium (II) from simulated wastewater by ion flotation technique. Iranian Journal of Environmental Health Science & Engineering, 10(1), 16-16.
Sarkar, M. S. K. A., Evans, G. M., & Donne, S. W. (2010). Bubble size measurement in electroflotation. Minerals Engineering, 23(11), 1058-1065.
Saththasivam, J., Loganathan, K., & Sarp, S. (2016). An overview of oil–water separation using gas flotation systems. Chemosphere, 144, 671-680.
Shakir, K., Elkafrawy, A. F., Ghoneimy, H. F., Elrab Beheir, S. G., & Refaat, M. (2010). Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Research, 44(5), 1449-1461.
Shin, S. M., Kim, N. H., Sohn, J. S., Yang, D. H., & Kim, Y. H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79(3), 172-181.
Shuva, M. A. H., Rhamdhani, M. A., Brooks, G. A., Masood, S., & Reuter, M. A. (2016). Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review. Journal of Cleaner Production, 131, 795-809.
Sobianowska-Turek, A., Szczepaniak, W., Maciejewski, P., & Gawlik-Kobylińska, M. (2016). Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. Journal of Power Sources, 325, 220-228.
Soliman, M. A., Rashad, G. M., & Mahmoud, M. R. (2015). Fast and efficient cesium removal from simulated radioactive liquid waste by an isotope dilution–precipitate flotation process. Chemical Engineering Journal, 275, 342-350.
Sulaymon, A. H., & Mohammed, A. A. (2010). Separation and hydrodynamic performance of air-kerosene-water system by bubble column. International Journal of Chemical Reactor Engineering, 8(1).
Swain, B., Jeong, J., Lee, J., & Lee, G.-H. (2006). Separation of cobalt and lithium from mixed sulphate solution using Na-Cyanex 272. Hydrometallurgy, 84(3), 130-138.
Tang, W., Shan, B., Zhang, H., Zhang, W., Zhao, Y., Ding, Y., Zhu, X. (2014). Heavy Metal Contamination in the Surface Sediments of Representative Limnetic Ecosystems in Eastern China. Scientific Reports, 4, 7152.
Taseidifar, M., Makavipour, F., Pashley, R. M., & Rahman, A. F. M. M. (2017). Removal of heavy metal ions from water using ion flotation. Environmental Technology & Innovation, 8, 182-190.
Thanh, L. H. V., & Liu, J.-C. (2014). Flotation separation of soluble and colloidal indium from aqueous solution. Industrial & Engineering Chemistry Research, 53(3), 1242-1248.
van Eijk, H. M. J., & Majoor, F. A. (2003). Encyclopedia of Food Sciences and Nutrition (Second Edition).San Diego, Calif.; London: Academic.
Vieira, A. M., & Peres, A. E. C. (2007). The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering, 20(10), 1008-1013.
Vu, C. T., Lin, C., Shern, C.-C., Yeh, G., Le, V. G., & Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, 32-42.
Walkowiak, W. (1991). Mechanism of selective ion flotation. 1. Selective flotation of transition metal cations. Separation Science and Technology, 26(4), 559-568.
Wang, C.-q., Wang, H., Fu, J.-g., & Liu, Y.-n. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38.
Wang, L. K., Shammas, N. K., Selke, W. A., & Aulenbach, D. B. (2010). Gas dissolution, release, and bubble formation in flotation systems. Flotation technology, 49-83.
Wills, B. A., & Finch, J. A. (2016). Wills' Mineral Processing Technology (Eighth Edition). Boston: Butterworth-Heinemann.
Wungrattanasopon, P., Scamehorn, J. F., Chavedej, S., Saiwan, C., & Harwell, J. H. (1996). Use of foam flotation to remove tert-Butylphenol from water. Separation Science and Technology, 31(11), 1523-1540.
Xu, S., Lin, C., Qiu, P., Song, Y., Yang, W., Xu, G., Niu, A. (2015). Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China. Marine Pollution Bulletin, 100(1), 562-566.
Yalcin, T., Byers, A., & Ughadpaga, K. (2002). Dissolved gas method of generating bubbles for potential use in ore flotation. Mineral Processing and Extractive Metallurgy Review, 23(3-4), 181-197.
Yan, P., & Xiao, J.-X. (2004). Polymer–surfactant interaction: differences between alkyl sulfate and alkyl sulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 244(1), 39-44.
Yenial, Ü., & Bulut, G. (2017). Examination of flotation behavior of metal ions for process water remediation. Journal of Molecular Liquids, 241, 130-135.
Yuan, X. Z., Meng, Y. T., Zeng, G. M., Fang, Y. Y., & Shi, J. G. (2008). Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 256-261.
Zeng, X., & Li, J. (2015). On the sustainability of cobalt utilization in China. Resources, Conservation and Recycling, 104, 12-18.
Zheng, X., Gao, W., Zhang, X., He, M., Lin, X., Cao, H., Sun, Z. (2017). Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Management, 60, 680-688.
Zouboulis, A. I., & Maris, K. A. (1995). Removal of cadmium from dilute solutions by flotation. Water Science and Technology, 31(3), 315-326.
Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308.

QR CODE