簡易檢索 / 詳目顯示

研究生: 劉皇昇
Huang-Sheng Liu
論文名稱: 反鐵磁性Ir20Mn80薄膜之磁伸縮研究
Magnetostriction of the antiferromagnetic Ir20Mn80 thin films
指導教授: 鄭偉鈞
Wei-Chun Cheng
任盛源
Shien-Uang Jen
口試委員: 陳元宗
Yuan-Tsung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 110
中文關鍵詞: 磁伸縮
外文關鍵詞: IrMn
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用磁濺鍍的方式把Ir20Mn80反鐵磁性薄膜沉積於Corning 0211玻璃基板上,其樣品構造為glass (110 μm)/Ir20Mn80 (X Å)/Ta (100 Å),其中X=1500 Å、1000 Å、500 Å、300 Å和100 Å,之後再依照鍍膜條件進行溫度為250 ℃、持溫一小時之加場熱處理,即分為無經過熱處理與有經過熱處理兩種樣品。接著利用樣品震動磁力計(VSM)對樣品進行磁性分析;XRD繞射儀進行薄膜結構之鑑定;奈米壓痕試驗儀得知薄膜楊氏係數(Ef);電容式磁伸縮量測儀來量測不同薄膜厚度(X)的磁伸縮()與利用穿透式電子顯微鏡(TEM)觀察熱處理前後之晶粒尺寸(D)變化。
    經由上列儀器分析後,得知Ir20Mn80薄膜結構以生長方向為<200>的織構為主。且未經過熱處理之Ir20Mn80薄膜楊氏係數為180 GPa;熱處理後之薄膜楊氏係數為170 GPa。在磁伸縮性質方面,磁伸縮值會隨著Ir20Mn80薄膜厚度的減小而減小,其值約從-30 ppm左右下降至-390 ppm左右,且當樣品經過熱處理後,磁伸縮值會再為下降。在TEM觀察中發現Ir20Mn80薄膜厚度為1500 Å時,晶粒尺寸約為17 nm,而經過熱處理過後其晶粒尺寸約為22 nm。
    因此,當樣品經過溫度為250 ℃、持溫一小時之加場熱處理後,其磁伸縮訊號會比未經過熱處理的樣品表現的更為明顯,這是因為當Ir20Mn80薄膜經過熱處理後,有足夠的時間與驅動力進行退火熱處理三階段,使其薄膜之楊氏係數下降,晶粒尺寸成長,導致其磁伸縮性質更為明顯。


    In this study, we have made Ir20Mn80 antiferromagnetic thin films on a Corning 0211 glass substrate, respectively, by sputtering method. Sample configuration is glass (110 m)/Ir20Mn80 (X Å)/Ta (100 Å), When X=1500 Å, 1000 Å, 500 Å, 300 Å and 100 Å. To anneal the sample, we had the annealing temperature 250 ℃, annealing time 1 hour. There were two sets of samples: one is annealing, the other is without. We analyzed the magnetic property by vibrating sample magnetometer (VSM). The crystalline structure and the phase were analyzed by XRD. Young’s modulus of thin film (Ef) was measured by the nano-indentation techniqe. Magnetostriction () of different thickness (X) were measured the change of electric capacitance, when the field (H) was varied. We used the transmission electron microscope (TEM) to observe one the change of grain size (D) before and after annealing.
    After analysing via the above-listed instrument, we know that the Ir20Mn80 thin film grow with the <200> texture, Ef=180 GPa before annealing, Ef=170 GPa after annealing. As to the magnetostrictive part, the value has been decrease when the thickness decreases, i.e. from -30 ppm to -390 ppm. After annealing, the the value has been reduced again. Form TEM observation, for the X=1500 Å of Ir20Mn80 thin film, before annealing D=17 nm, and after annealing D has been grown to 22 nm.
    So, after annealing, the magnetostriction of Ir20Mn80 thin film will be better than before annealing. Because after annealing, it had enough time and driving force to precede the three steps of annealing. That will also make the Young’s modulus drop, the grain size increase, and get better magnetostriction.

    第一章 前言1 第二章 文獻回顧3 2.1 薄膜成長3 2.1.1 薄膜成長機制3 2.1.2 影響薄膜成長的因素5 2.2 物質磁性分類6 2.3 磁現象8 2.3.1 磁異向性8 2.3.2 磁伸縮效應9 2.3.3 磁伸縮換算11 第三章 實驗原理與實驗設備18 3.1 高溫蒸鍍系統18 3.2 探針式膜厚量測儀19 3.3 高真空磁濺鍍系統19 3.3.1 濺鍍原理20 3.3.2 本濺鍍系統與設備20 3.4 樣品震動磁力計(VSM)21 3.5 電容式磁伸縮量測儀22 3.6 奈米壓痕試驗儀23 3.6.1 奈米壓痕試驗儀簡介23 3.6.2 鑽石探針種類24 3.6.3 奈米壓痕試驗儀實驗原理25 3.6.4 奈米壓痕試驗儀架構27 3.7 XRD繞射儀27 3.8 穿透式電子顯微鏡(TEM)28 第四章 實驗步驟40 4.1 Corning 0211薄玻璃基板厚度之測定40 4.2 熱蒸鍍機鍍膜步驟41 4.3 探針式膜厚量測儀操作步驟42 4.4 濺鍍機操作步驟43 4.4.1 濺鍍機抽真空步驟43 4.4.2 濺鍍機鍍膜步驟44 4.5 樣品震動磁力計(VSM)操作步驟46 4.6 步進機之操作步驟47 4.7 電容式磁伸縮量測儀操作步驟48 4.8 奈米壓痕試驗儀操作步驟49 4.9 XRD繞射儀操作步驟50 4.10 TEM試片製作51 第五章 結果與討論63 5.1 VSM結果分析63 5.2 XRD繞射分析64 5.3 薄膜機械性質分析66 5.4 薄膜磁伸縮性質分析67 5.4.1 樣品自由末端位移量與電容值變化量之關係67 5.4.2 電容式磁伸縮量測儀之校正68 5.4.3 Ta保護層對磁伸縮之影響69 5.4.4 反鐵磁性Ir20Mn80薄膜之磁伸縮量測70 5.5 薄膜顯微結構觀察73 第六章 結論105 參考文獻107 作者簡介109 附錄110

    1.D. P. Pappas, C. R. Brundle, and H. Hopster, Phys. Rev. B, 45, 8169 (1992).
    2.S. Muller, P. Bayer, C. Reischl, K. Heinz, B. Feldmann, H. Zillgen, and M. Wuttig, Phys. Rev. Lett, 74, 765 (1995).
    3.M. T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Phys. Rev. B, 55, 5886 (1997).
    4.W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
    5.W. J. Gallagher, S. S. P. Parkin, X. P. Bian, R. A. Altman, and G. Xiao, J. Appl. Phys. 81, 3741 (1997).
    6.J. Schmalhorst, H. Brückl , G. Reiss, M. Vieth, G. Gieres, and J. Wecker, J. Appl. Phys. 87, 5191 (2000).
    7.莊達仁,“VLSI製造技術”,高立圖書有限公司 (2000)。
    8.陳元宗,國立清華大學材料科學工程研究所博士論文 (2006)。
    9.D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, Chapman & Hall (1992).
    10.黃榮俊,物理雙月刊,十七卷六期,663-973 (1995)。
    11.金重勳,磁性技術手冊,中華民國磁性技術協會出版 (2002)。
    12.近角聰信著,張煦、李學養譯,“磁性物理學”,聯經出版事業公司 (1982)。
    13.高銘南,國立海洋大學光電所碩士論文 (2001)。
    14.楊念庭,國立台灣科技大學機械研究所碩士論文 (2007)。
    15.Dektak3 user’s manual, Sloan Technology (1991).
    16.蔡宗霖,國立高雄師範大學物理研究所碩士論文 (2006)。
    17.Model 7407 Vibrating Sample Magnetometer user’s manual, Lake Shore.
    18.David Cheng, Fundamentals of Engineering Electromagnetics (1992).
    19.Erik Klokholm, IEEE Transactions on Magnetics, Vol. MAG-12, 819 (1976).
    20.張有進,國立台灣科技大學機械研究所碩士論文 (2005)。
    21.A.C. Fishcher-Cripps, UMIS Nanoindentation user’s handout, CSIRO (2000).
    22.W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).
    23.UMIS user’s manual, CSIRO (2002).
    24.吳泰伯、許樹恩,“X光繞射原理與材料結構分析”,中國材料科學學會(1996)。
    25.陳力俊,“材料電子顯微鏡學”,行政院國科會精密儀器發展中心 (1994)。
    26.For-Axis Stage Controller SHOT-204MS user’s manual, SIGMA KOKI.
    27.MOTORIZED STAGES 2005a, SIGMA KOKI.
    28.中央研究院物理所XRD操作手冊。
    29.B. D CULLITY, Introduction to Magnetic Materials, ADDISON-WESLEY PUBLISHING COMPANY (1972).
    30.A. J. Devasahayam, P. J. Sides, and M. H. Kryder, J. Appl. Phys. 83, 7216 (1998).
    31.Tai-Yen Peng, San-Yuan Chen, C. K. Lo and Y. D. Yao, J. Appl. Phys. 101, 09E514 (2007).
    32.L. Neel, J. Phys. Rad., Vol.15 pp. 225~239 (1954).
    33.William D. Callister, Jr.原著,陳文照,曾春風,游信和譯,“材料科學工程”,高立圖書有限公司 (2000)。

    無法下載圖示 全文公開日期 2009/06/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2010/06/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE