簡易檢索 / 詳目顯示

研究生: 李俊杰
Chun-Chieh Lee
論文名稱: 使用到達程序之平均值與標準差的頻寬分配法:WiMAX網路的一個排程演算法
Bandwidth Allocation Using the Mean & Standard deviation of Arrival Process:A Scheduling Algorithm for WiMAX Network
指導教授: 陳漢宗
Hann-tzong Chern
口試委員: 黎碧煌
Bih-hwang Lee
黃一峰
I-feng Huang
蕭振木
Cheng-mu Shiao
李仁鐘
Zne-jung Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: IEEE 802.16排程演算法服務品質頻寬分配平均值標準差
外文關鍵詞: IEEE 802.16, scheduling algorithm, QoS, bandwidth, mean, standard deviation
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在IEEE 802.16標準規範中定義了五種服務流的類型,而每一種服務流都有專屬的服務品質要求,許多被提出來排程演算法都必須要滿足每一種服務流的服務品質。在傳統基地台主要是根據使用者的需求來分配頻寬額度,實際情況下使用者所提出頻寬要求可能無法完整地獲得頻寬分配量,也就是說基地台正在執行頻寬分配時可能無法滿足使用者本身實際的頻寬要求。當系統負載很重時,可能會造成佇列的延遲時間過大,尤其針對即時性服務流而言會造成嚴重服務品質上的問題,而導致了連線允許控制拒絕任何服務需求,即使是已被同意的連線也無法繼續被排程,本論文會提出一個基於頻寬分配考慮統計到達率之頻寬分配演算法(Bandwidth Allocation Considering The Statistics of Arrival, BAcSOA)來解決這問題。
    一開始時,若使用傳統的請求-同意機制,則是無法正確地估測自己頻寬要求的額度,以及基地台無法有效地執行頻寬分配。此時,必須各別統計延伸之即時輪詢服務與即時輪詢服務的到達率之平均值與標準差。而平均值表示測量平均的頻寬要求額度,而標準差則表示測量佇列暫態的頻寬要求額度,因此,對於即時性服務流量而言以 μ+kσ 作為頻寬分配之用,對於即時性服務流所給予較大的k值並獲得更多機會來傳送,獲得較佳的效能。
    進一步針對即時性服務類型來討論,本身即時性封包都設有截止時間,當傳送時間超過這個截止時間,則封包會變成無用而將被丟棄,也就是說即時性服務流必須屬於高優先權才能有機會優先排程服務,排程器除了要分配適當的頻寬額度給即時性服務流,必須在即時性封包的截止時間到期之前就要將封包傳送出去。所以決定一個適當的頻寬額度,去計算出每一個服務流的到達率來做為一個頻寬分配的參數,再求得服務流的到達率之平均值與標準差,並以μ+kσ額度來做為分配頻寬,當k值愈大也代表了獲得愈高的優先權,透過k值可以決定這個服務流的效能。
    在本論文中,我們將去修改調整BAcSOA演算法而成為增強型BAcSOA演算法(Enhanced BAcSOA, EBAcSOA),並經由數值的分析,如何根據所需的效能來決定合適k值。因此,發展出一個模擬平台依據所需的效能來決定適當的k值,這個新穎的方法可以透過幾個工作點來獲得效能的結果,與其他研究方式大不相同,所提出的方法能夠從一個系統業者的角度來看是具有實用性,而這個方法對研究排程機制的學者們是具有吸引力。


    Five types of service flows are defined in the standard of IEEE 802.16. Each service flow has its own type of quality of service (QoS) requirement. Some scheduling algorithm is needed to satisfy the QoS requirement of each class. Traditional Base Station allocates bandwidth according to the request of user. However, the request may not equal to the real requirement in some situation. Thus, the assignment of bandwidth may be far from the real requirement. When the load is heavy, this may cause the time delay of some queue too large and create serious problem for real time traffic. Also, this may make the CAC mechanism denies any service although some old grants are never used completely. A method named BAcSOA is proposed to solve this problem in this paper.
    In the beginning, we will use the traditional “Request & Grant” mechanism. However, we will assume some users may not estimate their request correctly and the system may not operate efficiently. To correct it, the mean μ and standard deviation σ of the arrival rate for ertPS and rtPS traffic will be estimated during the operation of system. The mean μ represents the average requirement and the standard deviation σ includes the possibly temporary requirement of this queue. Therefore, the grant will be replaced and μ+kσ will be used as the assignment of these traffics. Larger k gives real-time traffic more chance to send all its data in the queue.
    For real-time classes, the sent packet has a deadline. As the transmission delay is over the limitation of deadline, the packet becomes useless and will be discarded. Thus, they will be served earlier and have higher probability. The scheduler should assign proper bandwidth for real-time flows and send the real-time packets before they are discarded. To deicide the right allocated bandwidth, the arrival rate of each flow is a good parameter for assignment. The average μ and standard deviation σ of arrival rate correspond to the long term need and variation of load for one flow. Thus, we proposed μ+kσ is used as a reference to allocate bandwidth for one flow. Different classes of flows will be given different values of k which corresponds to the priorities of classes. In this algorithm, flow with higher priority should have larger value of k. The value of k will decide the performance of this class.
    In this paper, we revise the algorithm to EBAcSOA and propose a mathematical way to decide the value of k for a required performance. Then, a simulation platform is proposed to decide k such that a required performance can be obtained for an operating system. This approach may be different from other researches in which there is no required performance and the performance results are obtained only for several operating points. However, the approach proposed is more practical from the view of an operator and may become an attractive point for other researchers.

    論文摘要 I ABSTRACT III 目錄 V 圖目錄 VII 表目錄 IX 第一章 序論 1 1.1 前言 1 1.2研究目的與動機 4 1.3 論文架構 6 第二章 相關背景研究 7 2.1 IEEE 802.16 標準發展沿革 7 2.2 IEEE 802.16 網路拓撲模式 10 2.2.1點對多點網路架構 10 2.2.2中繼網路架構 11 2.2.3網狀網路架構 12 2.3 IEEE 802.16 媒介存取控制層 13 2.3.1收斂子層 14 2.3.2通用部份子層 15 2.3.3安全子層 17 2.4 IEEE 802.16 MAC標頭與資料單元格式 18 2.4.1 媒介存取控制層之協議資料單元 18 2.4.2連線識別號碼類型 21 2.4.3 頻寬要求與配置 23 2.5 IEEE 802.16 實體層 24 2.5.1 實體層的傳輸技術與雙工模式 24 2.5.2分時雙工模式之WiMAX訊框配置 31 2.6 IEEE 802.16網路連線建立程序 34 2.7 IEEE 802.16的服務品質機制 36 2.8 IEEE 802.16的相關排程研究 40 第三章 IEEE 802.16 的QoS系統架構 45 3.1 IEEE 802.16 的服務品質管理系統 45 3.2 連線允入控制 47 3.3 考慮統計到達率之頻寬分配演算法 49 3.3.1基本頻寬分配方式 50 3.3.2使用BAcSOA演算法 51 3.4 增強型BAcSOA演算法 53 3.5 柴比雪夫不等式與EBAcSOA演算法 55 3.6 在EBAcSOA演算法下依據所需遺失率來尋求k值 58 3.7在EBAcSOA演算法下依據所需的平均延遲時間來尋求k值 61 第四章 模擬結果 62 4.1 模擬環境概述 62 4.2 系統架構與參數設定 64 4.3 BAcSOA演算法模擬結果與分析 66 4.4 EBAcSOA演算法模擬結果與分析 73 第五章 結論 78 參考文獻 80

    [1] IEEE 802.16 std., “IEEE standard for local and metropolitan networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Oct 2004.
    [2] IEEE, “Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16 : Air Interface for Fixed and Mobile Boardband Wireless Access System, "IEEE P802.16e/D12,Oct. 2005.
    [3] “Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Multihop Relay Specification,” IEEE 802.16j-06/026r4, June 2007.
    [4] IEEE, "Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16 : Air Interface for Fixed and Mobile Boardband Wireless Access System,” IEEE P802.16m/D6,May 2010.
    [5] IEEE STD 802.16™-2012, “IEEE Standard for Air Interface for Broadband Wireless Access Systems,” August 2012.
    [6] L. Nuaymi, WiMAX: Technology for Broadband Wireless Access, John Wiley & Sons, 2007.
    [7] IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, ISO/IEC 8802-11:1999(E), Aug. 1999.
    [8] M.-J. Ho, J. Wang, K. Shelby, and H. Haisch, “IEEE 802.11g OFDM WLAN throughput performance,” in the proceedings of IEEE 58th Vehicular Technology Conference (VTC 2003), Oct. 2003, page2252-2256.
    [9] ”3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8)”, page TS 36.212 V8.0.0, Sept. 2007.
    [10] M. Gidlund and J.C. Laneri, “Scheduling algorithms for 3GPP long-term evolution systems: from a quality of service perspective,” IEEE International Symposium on Spread Spectrum Techniques and Applications, pp. 114–117, August 2008.
    [11] Rohde & Schwarz:Application Note 1MA111 “UMTS Long Term Evolution (LTE) – A Technology Introduction”, January 2008.
    [12] A. Ghosh, P. Patasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-advanced: next-generation wireless broadband technology,” IEEE Wireless Communications, vol.17, no. 3, pp.10-22, Jun. 2010.
    [13] H. Lee, T. Kwon, and D. Cho, “An enhanced uplink scheduling algorithm based on voice activity for VoIP services in IEEE 802.16d/e system,’’ IEEE Communications Letters, pp. 691-693, August 2005.
    [14] D. Niyato and E. Hossain, “Queue-aware uplink bandwidth allocation and rate control for polling service in IEEE 802.16 broadband wireless networks,’’ IEEE Transactions on Mobile Computing, pp. 668-679, June 2006.
    [15] J. Freitag and N. L. S. d. Fonseca, “Uplink scheduling with quality of service in IEEE 802.16 networks,” GLOBECOM '07. IEEE Global Telecommunications Conference, pp. 2503-2508, November 2007.
    [16] C. Y. Liu and Y. C. Chen, “An adaptive bandwidth request scheme for QoS support in WiMAX polling services,” The 28th International Conference on Distributed Computing Systems Workshops, pp. 60-65, June 2008.
    [17] S. Z. Tao and A. Gani, “Intelligent Uplink Bandwidth Allocation Based on PMP Mode for WiMAX,” International Conference on Computer Technology and Development, pp. 86-90, Nov. 2009.
    [18] E.-C. Park, “Efficient uplink bandwidth request with delay regulation for real-time service in mobile WiMAX networks,” IEEE Transactions on Mobile Computing, Vol. 8, No. 9, pp. 1235-1249, Sept. 2009.
    [19] J. Liang, X. Sun, and N. Kang, “Performance evaluation of an integrated and efficient uplink scheduler for WiMAX network,” IEEE International Conference on Communications Technology and Applications, pp. 326- 330, Oct. 2009.
    [20] Y. Fei, J. Pujolle, and K. Chen, “Performance improvement by efficient polling in WiMAX network,” IEEE International Symposium on Wireless Pervasive Computing, pp. 1-5, Feb. 2009.
    [21] W. Gan, J. Xian, X. Xie, and J. Ran, “A cross-layer designed scheduling algorithm for WiMAX uplink,” 9th International Conference on Electronic Measurement & Instruments, pp. 1-122 - 1-127, Aug. 2009.
    [22] D.M. Ali and K. Dimyati, “Performance study of the WiMAX uplink scheduler,” 2009 IEEE 9th Malaysia International Conference on Communications (MICC), pp. 831-835, Dec. 2009.
    [23] M.A. Teixeira and P.R. Guardieiro, “A Predictive Scheduling Algorithm for the Uplink Traffic in IEEE 802.16 Networks,” Advanced Communication Technology (ICACT) Vol. 1, pp. 651- 656, Feb. 2010.
    [24] P. H. Wu and J. N. Hwang, “Cross-layer channel-quality-fair scheduling for video uplink of camera networks over WiMAX,” IEEE International Conference on Communication (ICC), pp. 1-5, June 2011.
    [25] A. Sohail, “Performance Analysis of Bandwidth Request Mechanism of rtPS and nrtPS in WiMAX Uplink Traffic,” 2012 UKSim 14th International Conference on Computer Modelling and Simulation (UKSim), pp. 636-639, March 2012.
    [26] K. Sankarasubramaniam and S. Subramanian, “A performance study of uplink scheduling in WiMAX network,” International Conference on Recent Trends In Information Technology (ICRTIT), pp. 377-382, April 2012.
    [27] W.-T. Chen and J.-T. Lin, “Analysis of the impacts of uplink co-channel interference on cell coverage in an IEEE 802.16m system,” IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2208-2215, Jun. 2014.
    [28] M. Park, D. K. Noh, and S. Jung, “An efficient uplink admission control for ertPS in IEEE 802.16,’’ in Proceedings of International Conference on Information Networking (ICOIN 2014), pp. 395-400, Feb.2014.
    [29] G. Chu, D. Wang, and S. Mei, “A QoS architecture for the MAC protocol of IEEE 802.16 BWA system,” IEEE Conference on Communications, Circuits, and Systems, volume 1, pp. 435-439, Jun 2002.
    [30] K. Wongthavarawat and A. Ganz. Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. International Journal of Communication systems, volume 16, issue 1, pp. 81-96, Feb. 2003.
    [31] J. Chen, W. Jiao, and H. Wang, “A service flow management strategy for IEEE 802.16 broadband wireless access systems in TDD mode,” in Proc. of IEEE International Conference on Communications(ICC), pp. 3422 - 3426, May 2005.
    [32] W. Jiao, J. Chen, and Q. Guo, “An integrated QoS control architecture for IEEE 802.16 broadband wireless access systems,” Global Telecommunications Conference, vol 5, pp.6 - 12, Dec 2005.
    [33] H. S. Alavi, M. Mojdeh, and N. Yazdani, “A quality of service architecture for IEEE 802.16 standards,” IEEE Conference on Communications, pp. 249-253, Oct 2005.
    [34] C. Cicconetti, L. Lenzini, placeE. Mingozzi, and C. Eklund, “Quality of service support in IEEE 802.16 networks,” IEEE Network, pp. 50-55, April 2006.
    [35] A. Sayenko, O. Alanen, J. Karhula, and T. Hamalainen, “Ensuring the QoS Requirements in 802.16 Scheduling,” Proceedings of the 9th ACM international symposium on Modeling analysis and simulation of wireless and mobile systems, pp. 108-117, Oct. 2006.
    [36] L. Wan, W. Ma, and Z. Guo, “A cross-layer packet scheduling and subchannel allocation scheme in 802.16e OFDMA System,” IEEE Wireless Communication and Networking Conference, pp. 1865-1870, March 2007.
    [37] B. Rong, Y. Qian, and K. Lu, "Integrated downlink resource management for multiservice WiMAX networks," IEEE Transactions on Mobile Computing, pp. 621-632, June 2007.
    [38] A. Iera, A. Molinaro, S. Pizzi, and R. Calabria, “Channel-aware scheduling for QoS and fairness provisioning in IEEE 802.16/WiMAX broadband wireless access systems,” IEEE Network, pp. 34-41, Oct. 2007.
    [39] C. Cicconetti, A. Erta, L. Lenzini, and E. Mingozzi, “Performance evaluation of the IEEE 802.16 MAC for QoS support,” IEEE Transactions on Mobile Computing, pp. 26-38, January 2007.
    [40] M. H. Fong, R. Novak, and R. Srinivasan, “Improved VoIP capacity in mobile WiMAX systems using persistent resource allocation”, in Communications Magazine, pp.50-57, October, 2008.
    [41] Y. T. Mai, C. C. Yang, and Y. H. Lin, “Design of the cross-layer QoS framework for the IEEE 802.16 PMP networks,” Journal of the IEICE Transactions on Communication, May 2008.
    [42] Y. C. Lai and Y. H. Chen, “A Channel Quality and QoS Aware Bandwidth Allocation Algorithm for IEEE 802.16 Base Stations,” IEEE 22nd International Conference on Advanced Information Networking and Applications (AINA), pp. 472 - 479, March 2008.
    [43] G. Song, Y. Li, L., and J. Cimini, “Joint channel- and queue-aware scheduling for multiuser diversity in wireless OFDMA networks,” IEEE Transactions on Communications, pp. 2109-2121, Jul. 2009.
    [44] S.T. Cheng, B. F. Chen, and C. L. Chou, “ Fairness Strategy and Scheduling Algorithm for IEEE 802.16 Wireless Access Systems,” The First International Conference on Networks & Communications, pp.364-369, December 2009.
    [45] P. C. Ting, C.Y. Yu, N. Chilamkurti, T. H. Wang, and C. K. Shieh, “A Proposed RED-based Scheduling Scheme for QoS in WiMAX Networks, ” International Symposium on Wireless and Pervasive Computing (ISWPC), pp. 1-5, Feb. 2009.
    [46] C. C. Lee, Y. H. Chang, and H. T. Chern, “Pre-allocation of unused bandwidth algorithm: A QoS control protocol for 802.16 network”, 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA) pp. 160-165, July, 2010,.
    [47] C.H. Hsieh, T. J. Wu, and H. T. Chern, “Bandwidth control protocol in WiMAX network,” 2010 International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 342 -349, Nov.2010.
    [48] B. Jung, J. Y. Choi, Y. T. Han, M. G. Kim, and M. Kang, “Centralized scheduling mechanism for enhanced end-to-end delay and QoS support in integrated architecture of EPON and WiMAX,” IEEE/OSA Journal of Lightwave Technology, Vol. 28, Issue 16, pp. 2277-2288, April 2010.
    [49] A. Esmailpour and N. Nasser, “A novel scheme for packet scheduling and bandwidth allocation in WiMAX networks,” IEEE International Conference on Communications (ICC), pp. 1-5, June 2011.
    [50] M. Oktay and H. A. Mantar,"A Real-Time Scheduling Architecture for IEEE 802.16-WiMAX Systems," 2011 IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp.189-194, Jan. 2011.
    [51] D. Kumarand and V. Priyameenal, “Adaptive Packet Scheduling Algorithm for Real-Time Services in Wi-MAX Networks,” 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 342-347, 2011.
    [52] A. Gupta and B. R. Chandavarkar, “An efficient bandwidth management algorithm for WiMAX (IEEE 802.16) wireless network: EBM allocation algorithm,” 2012 IEEE 7th International Conference on Industrial and Information Systems, pp.1-5, Aug. 2012.
    [53] H. T. Chern, C. C. Lee, and H. K. Chen, “Bandwidth allocation using the statistics of arrival (BAcSOA): A scheduling algorithm for WiMAX network,” 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1006-1011, July 2012.
    [54] H. T. Chern, H. K. Chen, and C.H. Hsieh, “The bandwidth adjustment in the last round (BA-LR) for WiMAX network’’, IEEE International Conference on Computer Science and Automation Engineering (CSAE), pp. 649-653, May 2012.
    [55] H. T. Chern and B. H. Xu, “The bandwidth allocation by queue length (BA-QL) for WiMAX network” International Conference on Information Science and Technology (ICIST), pp. 1076-1080, March 2013.
    [56] J. Chen, W. H. Tarn, and J. D. Lee, “Fairness consideration of bandwidth scheduling for real-time services in IEEE 802.16m wireless networks’’, International Conference on Computational Problem-solving (ICCP), pp.179-183, Oct. 2013.
    [57] M. Vijayalakshmi, S.R. Puranik, and L. Kulkarni, “A cross layer scheduling algorithm in IEEE 802.16e WiMAX standard to support rtPS traffic class’’, Fourth International Conference on Communication Systems and Network Technologies (CSNT), pp. 347-351, April 2014.
    [58] S.-J. Yang and C.-H. Cheng, “Designs of enhanced CAC with QoS scheme for efficient resource allocations on the IEEE 802.16 network," Journal of Internet Technology, vol. 15, pp. 175-184, 2014.
    [59] B. Li, Y. Qin, C. P. Low, and C. L. Gwee, “A survey on mobile WiMAX,” IEEE Communications Mag., vol. 45, no. 12, Dec. 2007, pp. 70-75.
    [60] K. Etemad, “Overview of mobile WiMAX technology and evolution,” IEEE Communications Mag., vol. 46, no. 10, pp. 31-40, Oct. 2008.
    [61] A. Belghith and L. Nuaymi, “Comparison of WiMAX scheduling algorithm and proposals for the rtPS QoS class,” 14th European Wireless Conference, pp. 22-25, June 2008.
    [62] I. Papapanagiotou, D. Toumpakaris, J. Lee, and M. Devetsikiotis, “A survey on next generation mobile WiMAX networks: objectives, features and technical challenges,” IEEE Communications Surveys Tutorials, vol. 11, no. 4, pp. 3-18, Dec. 2009.
    [63] Chakchai S. I., R. Jain, and A. K. Tamimi, “Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey,” IEEE Journal of Selected Areas in Communications, vol. 27, No. 2, pp. 156 - 171, February 2009.
    [64] I.C. Msadaa, D. Camara, and F. Filali, “Scheduling and CAC in IEEE 802.16 fixed BWNs: A Comprehensive Survey and Taxonomy,” IEEE Communications Surveys & Tutorials, vol. 12, pp. 459-487, May 2010.
    [65] V.H. Muntean and M. Otesteanu, “WiMAX versus LTE - An overview of technical aspects for next generation networks technologies,” 9th International Symposium on Electronics and Telecommunications (ISETC), pp. 225 – 228, Nov. 2010.
    [66] D. Pareit, B. Lannoo, I. Moerman, and P. Demeester, “The history of WiMAX: A complete survey of the evolution in certification and standardization for IEEE 802.16 and WiMAX,” IEEE Communications Surveys Tutorials, vol. 14, no. 4, pp. 1183–1211, Oct. 2012.
    [67] S. Gupta,“Comparison of various scheduling algorithms in WiMAX: a brief review,” International Conference on Advances in Management and Technology, pp. 34-36, 2013.
    [68] Priyanka and J. Malhotra, "Survey of issues and challenges in the mac layer for QoS in WiMAX," International Conference on Advances in Engineering and Technology Research (ICAETR), pp.1-5, Aug. 2014.
    [69] H. Wang, W. Lei, and D.P. Agrawal, “Dynamic admission control and QoS for 802.16 wireless MAN,” In Proc. of the Wireless Telecommunications Symposium, pp. 60 - 66, April 2005.
    [70] H. Wang, B. He, and D.P. Agrawal, “Admission control and bandwidth allocation above packet level for IEEE 802.16 wireless MAN,” Proc. 12th International Conference on Parallel and Distributed Systems (ICPADS 2006), pp.1–6, July 2006.
    [71] D. Niyato and E. Hossain, “A game-theoretic approach to bandwidth allocation and admission control for polling services in IEEE 802.16 broadband wireless networks,” in Proc. of the 3rd international conference on Quality of service in heterogeneous wired/wireless networks, Aug. 2006.
    [72] T. Tsai, C. Jiang, and C. Wang, “CAC and packet scheduling using token bucket for IEEE 802.16 networks”, journal of communications, Vol. 1, No. 2, May 2006.
    [73] T.C. Tsai, C.H. Jiang, and C.Y. Wang “CAC and packet scheduling using token bucket for IEEE 802.16 networks,” Journal of Communications, pp. 30-37, May 2006.
    [74] D. Ghosh, A. Gupta, and P. Mohapatra, “Admission control and interference-aware scheduling in multi-hop WiMAX networks,” IEEE International Conference on Mobile Ad hoc and Sensor Systems (MASS), pp. 1-9, Oct. 2007.
    [75] S. B. Chaudhry and R. K. Guha, “Adaptive connection admission control and packet scheduling for QoS provisioning in mobile WiMAX,” in Proc. of IEEE International Conference on Signal Processing and Communication (ICSPC), pp. 1355 - 1358, Nov. 2007.
    [76] D. Niyato and E. Hossain, “Radio resource management games in wireless networks: an approach to bandwidth allocation and admission control for polling service in IEEE 802.16,” IEEE Wireless Communications, Vol.14, No.1, pp.72-83, Feb. 2007.
    [77] K. Yu, X. Wang, S. Sun, L. Zhang, and X. Wu, “A statistical connection admission control mechanism for multiservice IEEE 802.16 Network,” in Proc. of Vehicular Technology Conference, pp. 1-5, April 2009.
    [78] H.C. Jang and K. C. Yang, “A QoS aware multi-modulation CAC for WiMAX,” International Symposium on Computer Science and Society (ISCCS, pp. 365-368), July 2011.
    [79] R. Laishram and I. S. Misra, "A bandwidth efficient adaptive call admission control scheme for QoS provisioning in IEEE 802.16e mobile networks," International Journal of Wireless Information Networks, vol. 18, pp. 108-116, April 2011.
    [80] E. L. Hahne and R. G. Gallager,“Round robin scheduling for fair flow control in Data Communication Networks” , International Conference on Communications, pp. 103-107, June 1986.
    [81] A. Demers, S. Keshav, and S. Shenker “Analysis and simulation of a fair queuing algorithm” SIGCOMM 1989 Symposium proceedings on Communications architectures & protocols, pp.1-12, Sep. 1989.
    [82] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round robin,” IEEE Trans. Networking, vol. 4, no. 3, pp. 375-385, June 1996.
    [83] S. Lu, V. Bharghavan, and R. Srikant,” Fair scheduling in wireless packet networks,” IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, pp. 473-489, Aug. 1999.
    [84] V. Sagar and D. Das, “ Modified EDF algorithm and WiMAX architecture to ensure end-to-end delay in multi-hop networks,” IEEE Region 10 Conference TENCON, pp. 1-6, Nov. 2008.
    [85] J. A. Zubairi, E. Erdogan, and S. Reich, “Experiments in fair scheduling in 4G WiMAX and LTE,” International Conference on High Performance Computing & Simulation (HPCS), pp. 277-282, July 2015.
    [86] J. Chen, C.-C. Wang, F. C.-D. Tsai, C.-W. Chang, S.-S. Liu, J. Guo, W.-J. Lien, J.-H. Sum, and C.-H. Hung, “The design and implementation of WiMAX module for ns-2 simulator,” Proceedings of ACM Workshop on NS-2: the IP Network Simulator, October 2006.
    [87] S. Ben-Guedria, B. Sanso, and J. F. Frigon, “PolyMAX, a mobile WiMAX module for the ns-2 simulator with QoS and AMC support,” Simulation Modeling Practice and Theory, Vol. 19, pp. 2076-2101, July 2011.
    [88] The network simulator ns-2. http://www.isi.edu/nsnam/ns/, September 2007.
    [89] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2, Springer, Nov. 2008.
    [90] 許獻聰,WiMAX無線網路技術系列,國立中央大學通訊工程系,2009年。
    [91] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking. Prentice Hall, 2007.
    [92] FRANK OHRTMAN, WiMAX HANDBOOK building 802.16 Wireless Networks. McGraw-Hill, 2008.
    [93] 許獻聰,封包分類與交換器,淡江大學電機工程學系,2004年。
    [94] 王駿騰,無線區域網路支援服務品質之研究,銘傳大學資訊傳播工程學系碩士班碩士學位論文,2005年,第12-13頁。
    [95] 周群倫,WiMAX 排程演算法的績效評估,大同大學資訊工程研究所碩士論文,2008年,第12-22頁。
    [96] 陳思翰,IEEE 802.16 WiMAX中頻寬資源管理架構之研究,國立台北科技大學資訊工程系碩士班碩士論文,2008年,第22-25頁。
    [97] 林正彥,EPON 與 802.16 整合接取網路之動態頻寬管理方法研究,國立中央大學通訊工程研究所碩士論文,2009年,第16頁。
    [98] 陳俊竹,在WiMAX網路中針對VBR資料流的動態頻寬借用與調整機制,國立中山大學電機工程系碩士班,2008年,第6-11頁。
    [99] 潘政毅,一個在WiMAX網路上以估算佇列長度為基礎的網路語音下行鏈結排程方法,國立屏東商業技術學院資訊管理研究所碩士論文,2010年,第19-23頁。
    [100] 許裕峰,以適應性之動態調整機制增加WiMAX下載多媒體影音之連線數,國立成功大學工程科學研究所碩士論文,2009年,第25-34頁。
    [101] 林明昕,適用於IEEE 802.16且考量服務品質與公平性之排程機制,國立台灣科技大學資訊工程系碩士論文,2010年,第4-5頁。
    [102] 賴大農,在IEEE 802.16系統中支援QoS的有效頻寬分配機制,國立中山大學電機工程學系碩士論文,2011年,第12-24頁。
    [103] 陳政隅,考慮佇列長度與封包遺失率的頻寬分配法,國立台灣科技大學電子工程系碩士論文,2013年,第25-31頁。
    [104] 陳麒安,應用於WiMAX網路考慮封包最後時限的排序法,國立台灣科技大學電子工程系碩士論文,2014年,第31-34頁。
    [105] 李聖宏,應用於WiMAX網路依頻寬需求調變的輪詢法,國立台灣科技大學電子工程系碩士論文,2015年,第31-33頁。

    無法下載圖示 全文公開日期 2020/12/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2020/12/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE