簡易檢索 / 詳目顯示

研究生: 江恩瑩
En-Ying Jiang
論文名稱: 利用不同型態的咖啡控制室內臭氧濃度之研究
A Study on Indoor Ozone Control using Different Types of Coffee
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 周育任
Yu-Jen Chou
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 室內臭氧咖啡沉積速度
外文關鍵詞: Indoor Ozone, Coffee, Deposition Velocity
相關次數: 點閱:208下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代社會因生活型態的改變,人們長期間處於室內環境中,因此,如何提升室內空氣品質對人們而言至關重要。臭氧為室內空氣汙染物之一,人們長期暴露於臭氧下容易造成心血管及呼吸道相關疾病,亦有可能提升致死率。咖啡為現代人的日常飲品,且為世界第二大交易量的貨品。多項文獻指出咖啡渣除了可製備為生質活性碳並用於去除汙染物外,未經碳化處理的咖啡渣也可用於去除水中重金屬汙染物。本研究以被動式去除臭氧的概念,分析固態咖啡及液態咖啡於長時間下對於室內臭氧的移除效率及沉積速度。其中,固態咖啡的尺寸分為細咖啡粉、粗咖啡粉、及咖啡豆;液態咖啡則為常見的咖啡飲品;此外,本研究也納入活性碳粉、鹽水、及純水作為對照組。結果顯示活性碳粉的臭氧移除效率可達約50%,咖啡粉的臭氧移除效率則與粒徑有直接相關,細咖啡粉的臭氧移除效率為約57%,粗咖啡粉的臭氧移除效率約為41%,咖啡豆的臭氧移除效率則約為31%。另一方面,液態咖啡、鹽水、與純水的臭氧移除效率分別約為34%、12%、和8%。此外,活性碳粉、細咖啡粉、粗咖啡粉、咖啡豆、液態咖啡、鹽水、及純水對於臭氧的沉積速度分別約為0.46 cm/s 、0.60 cm/s、0.31 cm/s、0.20 cm/s、0.23 cm/s、0.06 cm/s、及 0.04 cm/s。 從比表面積及孔隙分析的結果指出,活性碳粉的比表面積及孔徑因為氧化後減少,但細咖啡粉經長時間的氧化後則使比表面積增大。且從能量散射光譜分析結果顯示,細咖啡粉相較於粗咖啡粉,其表面氧化程度較高。從X射線光電子能譜中亦能發現經臭氧反應後,細咖啡粉及活性碳粉因氧化產生了羧基、酚羥基、及醌基的化學位移,說明經實驗後兩材料表面受臭氧氧化作用較為明顯。而粗咖啡粉較無明顯特徵氧化峰產生,說明表面氧化程度,相較於活性碳及細咖啡粉而言較不平均,使其移除效率較低。根據實驗及化學檢驗結果可說明,固態及液態咖啡能不經特殊處理,即可與臭氧反應並降低臭氧濃度,未來可作為一般居家環境中能方便取得且能有效降低室內臭氧之被動式材料。


In modern society, people spend lots of time indoors. Therefore, improving the indoor air quality is significant for people. Ozone is one of the indoor air pollutants that will cause respiratory diseases, cardiovascular diseases, and even the mortality. Coffee is the daily drink for people and the second most traded farm product in the world. Many studies have shown that coffee grounds can be prepared as activated carbon to remove pollutants, and coffee grounds that has not been carbonized can also be used to remove heavy metal pollutants in water. This research uses the concept of passive removal of ozone to analyze the coffee for a long-time removal ozone efficiency and ozone deposition velocity. The research uses the solid and liquid types of coffee as the experimental materials. The solid coffee includes coarse coffee powder, fine coffee powder, and coffee bean. All of them are compared with the activated carbon, seawater, and deionized water. The results show that the activated carbon powder can remove ozone by 50% and the fine coffee powder can remove ozone by 57%. The coarse coffee powder and coffee bean can remove ozone by 41% and 31% respectively. The liquid coffee, seawater, and deionized water can remove ozone 34%, 12%, and 8% respectively. Furthermore, the activated carbon powder, fine coffee powder, coarse coffee powder, coffee bean, liquid coffee, seawater, and deionized water has a deposition velocity of respectively 0.46 cm/s, 0.6 cm/s, 0.31 cm/s, 0.20 cm/s, 0.23 cm/s, 0.06 cm/s, and 0.04 cm/s. The analysis of BET shows that the specific surface areas and pore size of activated carbon powder decreases after the test. But the specific surface areas and pore size of the fine coffee powder increases after the test. By the EDS analysis, the oxidation degree of fine coffee powder is higher than coarse coffee powder. Furthermore, the XPS analysis shows that the energy spectrum of activated carbon powder and fine coffee powder has peaks of carboxyl, phenolic hydroxyl, and quinone after the ozone test. The results show that the surface of activated carbon powder and fine coffee powder is ozonized more obviously. The coarse coffee powder has not shown the characteristic oxidation functional group after experiment. It shows that the surface oxidation degree of coarse coffee powder is more uneven than the activated carbon and fine coffee powder. Cause the removal efficiency of coarse coffee powder is lower than activated carbon and fine coffee powder. According to the results, coffee can react with ozone and can be the passive material to remove indoor ozone for the indoor environment.

摘要......................................................................................................................... i Abstract................................................................................................................... iii 誌謝......................................................................................................................... v 目錄......................................................................................................................... vii 圖目錄..................................................................................................................... ix 表目錄..................................................................................................................... x 第一章緒論......................................................................................................... 1 1.1 研究背景.................................................................................................. 1 1.1.1 室內臭氧來源............................................................................... 1 1.1.2 室內臭氧對人體的危害................................................................. 1 1.1.3 室內臭氧去除技術........................................................................ 2 1.2 研究動機.................................................................................................. 3 1.3 文獻探討.................................................................................................. 4 1.3.1 主動式去除方法............................................................................ 4 1.3.2 被動式去除方法............................................................................ 7 1.3.3 咖啡去除汙染物的相關應用......................................................... 10 1.4 研究目的.................................................................................................. 12 1.5 論文架構.................................................................................................. 13 第二章實驗原理及方法....................................................................................... 14 2.1 實驗原理.................................................................................................. 14 2.1.1 臭氧分解機制............................................................................... 14 2.1.2 沉積速度(Deposition Velocity)................................................. 14 2.1.3 移除效率(Removal Efficiency).................................................. 16 2.2 實驗設置與方法....................................................................................... 16 2.3 實驗方法.................................................................................................. 19 2.3.1 實驗材料....................................................................................... 19 2.3.2 檢驗儀器....................................................................................... 21 第三章結果與討論.............................................................................................. 24 3.1 臭氧移除效率........................................................................................... 24 3.2 臭氧沉積速度........................................................................................... 26 3.3 比表面積及孔徑分析(BET)................................................................. 27 3.4 掃描式電子顯微鏡成像分析(SEM)...................................................... 28 3.5 能量散射光譜分析(EDS)..................................................................... 32 3.6 X 射線光電子能譜分析(XPS) ............................................................. 33 3.7 感應耦合電漿質譜儀(ICP−MS).......................................................... 41 第四章結論與建議.............................................................................................. 43 4.1 結論......................................................................................................... 43 4.2 建議與未來工作....................................................................................... 44 參考文獻.................................................................................................................. 55

[1] P. L. Jenkins, T. J. Phillips, E. J. Mulberg, and S. P. Hui, “Activity patterns
of californians - use of and proximity to indoor pollutant sources,” Atmospheric
Environment Part a-General Topics, vol. 26, pp. 2141–2148, 1992.
[2] E. González-Guevara, J. C. Martínez-Lazcano, V. Custodio, M. Hernández-Cerón,
C. Rubio, and C. Paz, “Exposure to ozone induces a systemic inflammatory response:
possible source of the neurological alterations induced by this gas,” Inhalation
Toxicology, vol. 26, pp. 485–491, 2014.
[3] B. P. Singh, A. Kumar, D. Singh, M. Punia, K. Kumar, and V. K. Jain, “An
assessment of ozone levels, uv radiation and their occupational health hazard estimation
during photocopying operation,” Journal of Hazardous Materials, vol. 275,
pp. 55–62, 2014.
[4] D. G. Poppendieck, D. Rim, and A. K. Persily, “Ultrafine particle removal and
ozone generation by in-duct electrostatic precipitators,” Environmental Science &
Technology, vol. 48, pp. 2067–74, 2014.
[5] B. K. Coleman, H. Destaillats, A. T. Hodgson, and W. W. Nazaroff, “Ozone
consumption and volatile byproduct formation from surface reactions with aircraft
cabin materials and clothing fabrics,” Atmospheric Environment, vol. 42, pp. 642–
654, 2008.
[6] Y. Lu, X. Zhao, M. Wang, Z. Yang, X. Zhang, and C. Yang, “Feasibility analysis
on photocatalytic removal of gaseous ozone in aircraft cabins,” Building and
Environment, vol. 81, pp. 42–50, 2014.
[7] M. O. Fadeyi, “Ozone in indoor environments: Research progress in the past 15
years,” Sustainable Cities and Society, vol. 18, pp. 78–94, 2015.
[8] G. Bekö, J. G. Allen, C. J. Weschler, J. Vallarino, and J. D. Spengler, “Impact
of cabin ozone concentrations on passenger reported symptoms in commercial
aircraft,” PloS one, vol. 10, p. e0128454, 2015.
[9] E. Darling, G. C. Morrison, and R. L. Corsi, “Passive removal materials for indoor
ozone control,” Building and Environment, vol. 106, pp. 33–44, 2016.
[10] I. Mudway and F. Kelly, “Ozone and the lung: a sensitive issue,” Molecular aspects
of medicine, vol. 21, pp. 1–48, 2000.
[11] S. I. Sousa, M. C. Alvim-Ferraz, and F. G. Martins, “Health effects of ozone focusing
on childhood asthma: what is now known–a review from an epidemiological
point of view,” Chemosphere, vol. 90, pp. 2051–8, 2013.
[12] J. Huang, Y. Song, M. Chu, W. Dong, M. R. Miller, M. Loh, J. Xu, D. Yang,
R. Chi, X. Yang, S. Wu, X. Guo, and F. Deng, “Cardiorespiratory responses to
low-level ozone exposure: The indoor ozone study in children (dose),” Environment
International, vol. 131, p. 105021, 2019.
[13] R. McConnell, K. Berhane, F. Gilliland, S. J. London, T. Islam, W. J. Gauderman,
E. Avol, H. G. Margolis, and J. M. Peters, “Asthma in exercising children exposed
to ozone: a cohort study,” The Lancet, vol. 359, pp. 386–391, 2002.
[14] B. F. Hwang, Y. H. Chen, Y. T. Lin, X. T. Wu, and Y. Leo Lee, “Relationship
between exposure to fine particulates and ozone and reduced lung function in
children,” Environmental Research, vol. 137, pp. 382–90, 2015.
[15] M. L. Bell, A. McDermott, S. L. Zeger, J. M. Samet, and F. Dominici, “Ozone
and short-term mortality in 95 us urban communities, 1987-2000,” Jama, vol. 292,
pp. 2372–2378, 2004.
[16] M. Jerrett, R. T. Burnett, C. A. Pope III, K. Ito, G. Thurston, D. Krewski,
Y. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” The
New England Journal of Medicine, vol. 360, pp. 1085–1095, 2009.
[17] M. Liddament and M. Orme, “Energy and ventilation,” vol. 18, no. 11, pp. 1101–
1109, 1998.
[18] F. Wu, M. Wang, Y. Lu, X. Zhang, and C. Yang, “Catalytic removal of ozone and
design of an ozone converter for the bleeding air purification of aircraft cabin,”
Building and Environment, vol. 115, pp. 25–33, 2017.
[19] S. Bhangar and W. W. Nazaroff, “Atmospheric ozone levels encountered by commercial
aircraft on transatlantic routes,” Environmental Research Letters, vol. 8,
p. 014006, 2013.
[20] C. Weisel, C. J. Weschler, K. Mohan, J. Vallarino, and J. D. Spengler, “Ozone and
ozone byproducts in the cabins of commercial aircraft,” Environmental Science &
Technology, vol. 47, pp. 4711–7, 2013.
[21] L. Yang, Q. S. He, P. Havard, K. Corscadden, C. C. Xu, and X. Wang, “Coliquefaction
of spent coffee grounds and lignocellulosic feedstocks,” Bioresource
Technology, vol. 237, pp. 108–121, 2017.
[22] N. G. Jústiz-Smith, G. J. Virgo, and V. E. Buchanan, “Potential of jamaican
banana, coconut coir and bagasse fibres as composite materials,” Materials characterization,
vol. 59, pp. 1273–1278, 2008.
[23] E. W. Bruun, H. Hauggaard-Nielsen, N. Ibrahim, H. Egsgaard, P. Ambus, P. A.
Jensen, and K. Dam-Johansen, “Influence of fast pyrolysis temperature on biochar
labile fraction and short-term carbon loss in a loamy soil,” Biomass and Bioenergy,
vol. 35, pp. 1182–1189, 2011.
[24] G. A. Oliveira, A. Gevaerd, A. S. Mangrich, L. H. Marcolino-Junior, and M. F.
Bergamini, “Biochar obtained from spent coffee grounds: Evaluation of adsorption
properties and its application in a voltammetric sensor for lead (ii) ions,”
Microchemical Journal, vol. 165, 2021.
[25] S. K. Prabhakaran, K. Vijayaraghavan, and R. Balasubramanian, “Removal of
cr (vi) ions by spent tea and coffee dusts: reduction to cr (iii) and biosorption,”
Industrial & Engineering Chemistry Research, vol. 48, pp. 2113–2117, 2009.
[26] G. Z. Kyzas, N. K. Lazaridis, and A. C. Mitropoulos, “Removal of dyes from
aqueous solutions with untreated coffee residues as potential low-cost adsorbents:
Equilibrium, reuse and thermodynamic approach,” Chemical Engineering Journal,
vol. 189-190, pp. 148–159, 2012.
[27] K. Kaikake, K. Hoaki, H. Sunada, R. P. Dhakal, and Y. Baba, “Removal characteristics
of metal ions using degreased coffee beans: adsorption equilibrium of
cadmium(ii),” Bioresource Technology, vol. 98, pp. 2787–91, 2007.
[28] W. E. Oliveira, A. S. Franca, L. S. Oliveira, and S. D. Rocha, “Untreated coffee
husks as biosorbents for the removal of heavy metals from aqueous solutions,”
Journal of Hazardous Materials, vol. 152, pp. 1073–81, 2008.
[29] P. Parras, M. Martineztome, A. Jimenez, and M. Murcia, “Antioxidant capacity
of coffees of several origins brewed following three different procedures,” Food
Chemistry, vol. 102, pp. 582–592, 2007.
[30] G. Habte, I. M. Hwang, J. S. Kim, J. H. Hong, Y. S. Hong, J. Y. Choi, E. Y.
Nho, N. Jamila, N. Khan, and K. S. Kim, “Elemental profiling and geographical
differentiation of ethiopian coffee samples through inductively coupled plasmaoptical
emission spectroscopy (icp-oes), icp-mass spectrometry (icp-ms) and direct
mercury analyzer (dma),” Food Chemisty, vol. 212, pp. 512–20, 2016.
[31] P. Pohl, E. Stelmach, M. Welna, and A. Szymczycha-Madeja, “Determination of
the elemental composition of coffee using instrumental methods,” Food Analytical
Methods, vol. 6, pp. 598–613, 2012.
[32] A. Naga Babu, D. S. Reddy, G. S. Kumar, K. Ravindhranath, and G. V. Krishna
Mohan, “Removal of lead and fluoride from contaminated water using exhausted
coffee grounds based bio-sorbent,” Journal of Environmental Management,
vol. 218, pp. 602–612, 2018.
[33] M. Namdari, C.-S. Lee, and F. Haghighat, “Active ozone removal technologies for
a safe indoor environment: A comprehensive review,” Building and Environment,
vol. 187, 2021.
[34] G. C. Morrison, W. W. Nazaroff, J. A. Cano-Ruiz, A. T. Hodgson, and M. P. Modera,
“Indoor air quality impacts of ventilation ducts: ozone removal and emissions
of volatile organic compounds,” Journal of the Air Waste Management Association,
vol. 48, pp. 941–952, 1998.
[35] H. C. Shields, C. J. Weschler, and D. Naik, “Ozone removal by charcoal filters after
continuous extensive use (5 to 8 years),” Indoor Air, vol. 99, pp. 49–54, 1999.
[36] P. Lee and J. Davidson, “Evaluation of activated carbon filters for removal of
ozone at the ppb level,” American Industrial Hygiene Association Journal, vol. 60,
pp. 589–600, 1999.
[37] T. Metts and S. Batterman, “Effect of voc loading on the ozone removal efficiency
of activated carbon filters,” Chemosphere, vol. 62, pp. 34–44, 2006.
[38] M. Hyttinen, P. Pasanen, and P. Kalliokoski, “Removal of ozone on clean, dusty
and sooty supply air filters,” Atmospheric Environment, vol. 40, pp. 315–325, 2006.
[39] C.-C. Lin and H.-Y. Chen, “Impact of hvac filter on indoor air quality in terms
of ozone removal and carbonyls generation,” Atmospheric Environment, vol. 89,
pp. 29–34, 2014.
[40] I. S. Walker and M. H. Sherman, “Effect of ventilation strategies on residential
ozone levels,” Building and Environment, vol. 59, pp. 456–465, 2013.
[41] C. J. Cros, G. C. Morrison, J. A. Siegel, and R. L. Corsi, “Long-term performance
of passive materials for removal of ozone from indoor air,” Indoor Air, vol. 22,
pp. 43–53, 2012.
[42] D. A. Kunkel, E. T. Gall, J. A. Siegel, A. Novoselac, G. C. Morrison, and R. L.
Corsi, “Passive reduction of human exposure to indoor ozone,” Building and Environment,
vol. 45, pp. 445–452, 2010.
[43] T. Grøntoft, “Dry deposition of ozone on building materials. chamber measurements
and modelling of the time-dependent deposition,” Atmospheric environment,
vol. 36, pp. 5661–5670, 2002.
[44] T. Grøntoft and M. R. Raychaudhuri, “Compilation of tables of surface deposition
velocities for o3, no2 and so2 to a range of indoor surfaces,” Atmospheric
Environment, vol. 38, pp. 533–544, 2004.
[45] D. Rim, E. T. Gall, R. L. Maddalena, and W. W. Nazaroff, “Ozone reaction with
interior building materials: Influence of diurnal ozone variation, temperature and
humidity,” Atmospheric Environment, vol. 125, pp. 15–23, 2016.
[46] J. G. Klenø, P. A. Clausen, C. J. Weschler, and P. Wolkoff, “Determination of
ozone removal rates by selected building products using the flec emission cell,”
Environmental science & technology, vol. 35, pp. 2548–2553, 2001.
[47] M. Nicolas, O. Ramalho, and F. Maupetit, “Reactions between ozone and building
products: Impact on primary and secondary emissions,” Atmospheric Environment,
vol. 41, pp. 3129–3138, 2007.
[48] E. Gall, E. Darling, J. A. Siegel, G. C. Morrison, and R. L. Corsi, “Evaluation
of three common green building materials for ozone removal, and primary and
secondary emissions of aldehydes,” Atmospheric Environment, vol. 77, pp. 910–
918, 2013.
[49] E. T. Gall, R. L. Corsi, and J. A. Siegel, “Impact of physical properties on ozone
removal by several porous materials,” Environmental Science and Technology,
vol. 48, pp. 3682–90, 2014.
[50] H.-J. Moriske, G. Ebert, L. Konieczny, G. Menk, and M. Schöndube, “Concentrations
and decay rates of ozone in indoor air in dependence on building and surface
materials,” Toxicology letters, vol. 96, pp. 319–323, 1998.
[51] N. Azouaou, Z. Sadaoui, A. Djaafri, and H. Mokaddem, “Adsorption of cadmium
from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and
thermodynamics,” Journal of Hazardous Materials, vol. 184, pp. 126–134, 2010.
[52] M. Hernández Rodiguez, J. Yperman, R. Carleer, J. Maggen, D. Dadi, G. Gryglewicz,
B. Van der Bruggen, J. Falcón Hernández, and A. Otero Calvis, “Adsorption
of ni(ii) on spent coffee and coffee husk based activated carbon,” Journal of
Environmental Chemical Engineering, vol. 6, pp. 1161–1170, 2018.
[53] P. F. Hsieh and T. Y. Wen, “Evaluation of ozone removal by spent coffee grounds,”
Scientific Reports, vol. 10, p. 124, 2020.
[54] T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky, and G. E. Zaikov, “Ozone
decomposition,” Interdisciplinary toxicology, vol. 7, no. 2, p. 47, 2014.
[55] H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, and C. Zaror, “Effect of ozone
treatment on surface properties of activated carbon,” vol. 18, no. 6, pp. 2111–
2116, 2002.
[56] S. Psaltou, A. Karapatis, M. Mitrakas, and A. Zouboulis, “The role of metal ions
on p-cba degradation by catalytic ozonation,” Journal of Environmental Chemical
Engineering, vol. 7, 2019.
[57] J. Cano-Ruiz, D. Kong, R. Balas, and W. Nazaroff, “Removal of reactive gases
at indoor surfaces: combining mass transport and surface kinetics,” Atmospheric
Environment. Part A. General Topics, vol. 27, no. 13, pp. 2039–2050, 1993.
[58] G. C. Morrison, P. Zhao, and L. Kasthuri, “The spatial distribution of pollutant
transport to and from indoor surfaces,” Atmospheric Environment, vol. 40,
pp. 3677–3685, 2006.
[59] C.-C. Lin and S.-C. Hsu, “Deposition velocities and impact of physical properties
on ozone removal for building materials,” Atmospheric Environment, vol. 101,
pp. 194–199, 2015.
[60] V. Gupta, H. Ganegoda, M. H. Engelhard, J. Terry, and M. R. Linford, “Assigning
oxidation states to organic compounds via predictions from x-ray photoelectron
spectroscopy: A discussion of approaches and recommended improvements,” Journal
of Chemical Education, vol. 91, pp. 232–238, 2013.
[61] C. L. Mangun, K. R. Benak, M. A. Daley, and J. Economy, “Oxidation of activated
carbon fibers: effect on pore size, surface chemistry, and adsorption properties,”
Chemistry of Materials, vol. 11, pp. 3476–3483, 1999.
[62] P. M. Alvarez, J. F. Garcia-Araya, F. J. Beltran, F. J. Masa, and F. Medina,
“Ozonation of activated carbons: Effect on the adsorption of selected phenolic
compounds from aqueous solutions,” Journal of Colloid and Interface Science,
vol. 283, pp. 503–12, 2005.
[63] K. J. Cloete, Z. Smit, R. Minnis-Ndimba, P. Vavpetic, A. du Plessis, S. G. le Roux,
and P. Pelicon, “Physico-elemental analysis of roasted organic coffee beans from
ethiopia, colombia, honduras, and mexico using x-ray micro-computed tomography
and external beam particle induced x-ray emission,” Food Chemistry: X,
vol. 2, p. 100032, 2019.
[64] D. Shah, S. Bahr, P. Dietrich, M. Meyer, A. Thißen, and M. R. Linford, “Coffee
bean, by near-ambient pressure xps,” Surface Science Spectra, vol. 26, 2019.
[65] X. Chen, M. Farber, Y. Gao, I. Kulaots, E. M. Suuberg, and R. H. Hurt, “Mechanisms
of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon
surfaces,” Carbon, vol. 41, pp. 1489–1500, 2003.
[66] M. Li, M. Boggs, T. P. Beebe, and C. P. Huang, “Oxidation of single-walled
carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound,”
Carbon, vol. 46, no. 3, pp. 466–475, 2008.
[67] L. Fras, L. S. Johansson, P. Stenius, J. Laine, K. Stana-Kleinschek, and
V. Ribitsch, “Analysis of the oxidation of cellulose fibres by titration and xps,”
Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 260, no. 1-
3, pp. 101–108, 2005.
[68] D. B. Mawhinney and J. T. Yates Jr, “Ftir study of the oxidation of amorphous
carbon by ozone at 300 k—direct cooh formation,” Carbon, vol. 39, pp. 1167–1173,
2001.
[69] H. Valdés and C. Zaror, “Ozonation of benzothiazole saturated-activated carbons:
influence of carbon chemical surface properties,” Journal of hazardous materials,
vol. 137, pp. 1042–1048, 2006.
[70] M. Oliveira, S. Casal, S. Morais, C. Alves, F. Dias, S. Ramos, E. Mendes,
C. Delerue-Matos, and M. Beatriz P.P. Oliveira, “Intra- and interspecific mineral
composition variability of commercial instant coffees and coffee substitutes:
Contribution to mineral intake,” Food Chemistry, vol. 130, pp. 702–709, 2012.
[71] J. Wang and H. Chen, “Catalytic ozonation for water and wastewater treatment:
Recent advances and perspective,” Science of The Total Environment, vol. 704,
p. 135249, 2020.
[72] R. Andoyo, I. A. P. Prawitasari, E. Mardawati, Y. Cahyana, E. Sukarminah,
T. Rialita, M. Djali, Zaida, I. Hanidah, and I. S. Setiasih, “Retention time of ozone
at various water condition,” Journal of Physics: Conference Series, vol. 1080,
2018.
[73] J. Lin, A. Kawai, and T. Nakajima, “Effective catalysts for decomposition of
aqueous ozone,” Applied Catalysis B: Environmental, vol. 39, pp. 157–165, 2002.
[74] R. Gracia, J. Aragües, and J. Ovelleiro, “Mn (ii)-catalysed ozonation of raw ebro
river water and its ozonation by-products,” Water Research, vol. 32, pp. 57–62,
1998.
[75] F. J. Beltran, F. J. Rivas, and R. Montero-de Espinosa, “Iron type catalysts for
the ozonation of oxalic acid in water,” Water Research, vol. 39, pp. 3553–64, 2005.

QR CODE