簡易檢索 / 詳目顯示

研究生: 陳佳艷
Jessica Dwitya Intan
論文名稱: 印尼風土民居室內明火影響之觀察與模擬:以Honai House為例
Observation and Simulation Study on the impact of Indoor Open Fire in Indonesia’s Vernacular House: Honai House
指導教授: 邱韻祥
Yun-shang Chiou
林怡均
Yi-Jiun Peter LIN
口試委員: 林怡均
Yi-Jiun Peter LIN
林慶元
CHING-YUAN LIN
邱韻祥
Yun-Shang Chiou
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 151
外文關鍵詞: Open Fire, Fire Dynamic Simulation, Indonesia Vernacular Architecture, Honai House
相關次數: 點閱:374下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Since ancient times humans have been striving to find ways in order to adapt to this world’s climate. Start with a simple open fire to the modern electrical or even green powered heating system. However even to this day there are some areas in different parts of the world that still relies on open fire for indoor heating. Which, if maintained for a long time will cause severe respiratory problems that can lead to death.
    According to United Nations’ Statistics, the usage of combustible fuels for household energy results in Indoor air pollution that caused 4.3 million deaths in 2012 of which 60%of the cases are women and girls.
    Even though 13% of the global population still lacks electricity, solving this problem is not as simple as changing the power source. In most of the open fire usage, the fire is not only used for heating but also plays a role in the local tradition.
    In this study Dani Tribe from Indonesia have been chosen as a study case. Even Though located in tropical areas, the high-altitude location creates a warm and humid climate in the day and relatively cold (Up to 14-degree Celsius) temperature at night. In such climates Dani people rely on open fire as indoor heating source at night and also use the smoke to repel mosquitoes and preserve the Roof Structure. However, this Practice has led to 5.99% of the women population suffering from acute Respiratory Infection and in severe cases, also death (Tebay, 2020).
    By understanding the local customs and values through literature study and simulating the indoor open fire inside Honai with Fire Dynamic System simulation, this study aims to provide a basic understanding about how to implement indoor open fire in vernacular houses FDS.
    The goal is to provide a basic understanding of the current situation of temperature and smoke movement of indoor fire usage in Honai house according to social habits of local people. This understanding will lead to a better comprehension for future proposals of a better solution to lighten the smoke problem indoor fire user community.

    ACKNOWLEDGMENTS iii TABLE OF CONTENTS iv LIST OF TABLES ix LIST OF FIGURES ix CHAPTER 1 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objectives and Research Output 2 1.3 Significance of Research 3 CHAPTER 2 4 LITERATURE REVIEW 4 2.1 Dani Tribe 4 2.1.1 Location & Climate Condition (A2-02) 5 2.1.2 Socio-cultural Characteristics 6 2.1.3 Honai House 8 2.2 Heat Transfer 11 2.2.1 Conduction 11 2.2.2 Convection & Radiation 12 2.3 Fire Modeling 13 2.3.1 Pyrolysis 14 2.3.2 Ignition 14 2.3.3 Combustion 14 2.3.4 Thermal Radiation & Soot 14 2.3.5 Smoke & Convective Heat Transport 15 2.4 Fire Dynamic Simulation 15 2.4.1 Visualization 15 2.4.2 Validations 15 2.5 Combustion Toxicity 16 2.5.1 Asphyxiant Gases 16 2.5.2 Irritants 17 2.5.3 Particulates 17 2.6 Current Healthy Honai ( HOMESE / HOSE ) Development 17 2.6.1 HOMESE 18 2.6.3 Evaluation 19 2.7 Literature Review Insights 21 CHAPTER 3 23 MATERIALS AND METHODS 23 3.1 Domain Configuration 23 3.2 Initial Condition Setting 25 3.2.1 Ambient Condition 25 3.2.2 Background 26 3.3 Build as Obstruction (Coordinate) 26 3.3.1 Wall 27 3.3.1 Second Floor 28 3.4 Convert to Porous Media 29 3.5 Assign Material Properties 31 3.5.1 Wall 31 3.5.2 Floor 32 3.5.3 Roof 33 3.6 Pyrolysis and Fire Size 34 3.7 Auxiliary & Output Setting 35 3.8 Duration 36 3.9 Visualization Setting 37 3.9.1 Size Preserving 37 3.9.3 Scene Cliping 37 3.9.4 Colorbar Range 38 3.9.5 Vector Arrow 38 CHAPTER 4 40 RESULTS AND DISCUSSION 40 4.1 Simulation Results 40 4.1.1 Temperature Changes Diagram 40 4.1.2 Smoke Movement Diagram 44 4.1.3 CO2 Concentration Diagram 45 4.1.4 CO Concentration Diagram 49 4.1.5 Velocity Diagram 52 4.2 Result and Discussion 53 CHAPTER 5 54 CONCLUSION AND FUTURE STUDY 54 5.1 Conclusion and Findings 54 5.2 Limitation and Opportunities for Future Study 55 LIST OF REFERENCES 57

    Agency, U. S. (2003, August). Air Quality Guide for Particle Pollution. United States of America: www.epa.gov/airnow. Retrieved from www.epa.gov/airnow.
    Akintan, O., Jewitt, S., & Clifford, M. (2018). Culture, tradition, and taboo: Understanding the social shaping of fuel choices and cooking practices in Nigeria. Energy Research & Social Science, 14-22.
    Arobaya, A. Y., & Freddy Pattiselanno. (2007). The Useful Plants of Dani Ethnic Groups at The Baliem Valley of Papua. Biota, 192-195.
    Badan Pusat Statistik. (2020). Hasil Sensus Penduduk 2020 Kabupaten Jayawijaya. Berita Resmi Statistik. Kementerian Dalam Negeri.
    Bardar, R. M. (2013). CFD Simulation of the Thermal Conversion of Solid Biomass in Packed Bed Furnaces. the Institute for Process and Particle Engineering. Graz: Graz University of Technology.
    Bruce C. Trapnell, M. (2009). Biomass-fueled Intervention Stoves in the Developing World. American Journal of Respiratory and Critical Care Medicine, 586-587.
    Cascone, S., Evola, G., Gagliano, A., Sciuto, G., & Parisi, C. B. (2019). Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales. sustainability.
    Cengel, Y. A., & Ghajar, A. (2015). Heat and Mass Transfer Fundamentals & Applications. New York: McGraw-Hill Education.
    Conti, L., Barbari, M., & Monti, M. (2016). Steady-State Thermal Properties of Rectangular Straw-Bales (RSB) for Building. buildings.
    Ezekoye, O., Hurley, M., Torero, J., & McGrattan, K. (2013). Application of Heat Transfer Fundamentals to Fire Modeling.
    Ferkol, T., & Schraufnagel, D. (2013). The Global Burden of Respiratory Disease. American Thoracic Society, 404-406.
    Floyd, J. E. (2002). Comparison of CFAST and FDS for Fire Simulation with the HDR T51 and T52 Tests. National Institute of Standards and Technology.
    Forney, G. P. (2021). Smokeview, A Tool for Visualizing Fire Dynamic SImulation Data Volume I: User's Guide. National Institute of Standards and Technology.
    Grimwood, P., Hartin, E., McDonough, J., & Raffel, S. (n.d.). 3D firefighting: Techniques, tips, and tactics. OK: Fire Protection Publications.
    Harberle, S. G., Hope, G., & DeFretes, Y. (1991). Environmental change in the Baliem Valley, montane Irian Jaya, Republic of Indonesia. Journal of Biogeography, 25-40.
    Hastanti, B. W. (2017). Environmental Conditions and Socio-Cultural Characteristics for Watershed Management (Case study at Dani Tribe, Jayawijaya Papua). JPPDAS, 111-126.
    Holzhueter, K., & Itonaga, K. (2018). The Potential for Light Straw Clay Construction in Japan: An Examination of the Building Method and Thermal Performance. Journal of Asian Architecture and Building Engineering, 209-213.
    Hostikka, S., & McGrattan, K. (2001). Large Eddy Simulation of Wood Combustion. International Interflam (pp. 755-762). London: National Institute of Standards and Technology .
    Hurley, M. J. (2016). SFPE Handbook of Fire Protection. Greenbelt: Springer.
    Indonesia Toward Universal Access to Clean Cooking. (203, June). East Asia and Pacific Clean Stove Initiative Series. Washington, DC, United States of America: The International Bank for Reconstruction and Development.
    Kalu, P. N., Agbo, P., & Nwofe, P. (2016). Thermal Comfort Analysis of Different Roofing Materials. Asian Journal of Applied Sciences, 609-612.
    Karlsson, B. S., Hakansson, M., Sjoblom, J., & Henrik, S. (2020). Light my fire but don't choke on the smoke: Wellbeing and pollution from fireplace use in Sweden. Energy Research & Social Science.
    Kim, S., Yu, S., Seo, J., & Kim, S. (2013). Thermal Properties of Wooden Building Envelope by Thermal Conductivity of Structural Members. J. Korean Woos Sci. & Tech., 515-527.
    Kimura, K.-i., & Ymazaki, K. (1982). Passive Cooling Performance of Thatched Roofs in Traditional Japanese Vernacular Houses. Passive and Low Energy Alternatives I, The First International PLEA Conference Bermuda.
    Kossecka, E., & Kosny, J. (2004). Correlations Between Time Constants and Structure Factors of Building Walls. Archive of Civil Engineering, 175-188.
    Kossove, D. (1982). Smoke-filled rooms and lower respiratory disease in infants. SA MEDIESE TYDSKRIF.
    Macqueron, C. (2014). Computational Fluid Dynamics Modeling of a Wood-Burning Stove-Heated Traditional Sauna Using NIST's Fire Dynamic Simulator.
    McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., & Vanella, M. (2021). Fire Dynamic Simulator User's Guide. National Institute of Standards and Technology.
    McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2013). Fire Dynamic Simulator Technical Reference Guide Volume 1: Mathematical Model. Baltimore: National Institute of Standards and Technology.
    Novozhilov, V., Moghtaderi, B., Fletcher, D., & Kent, J. (1996). Computational Fluid Dynamics Modelling of Wood Combustion. Fire Safety Journal, 69-84.
    Nussbaurmer, T. (2015). Characterisation of particles from wood combustion with respect to health relevance and electrostratic precipitation.
    Opoku, A., Tabil, L., Crerar, B., & Shaw, M. (2006). Thermal conductivity and thermal diffusivity of timothy hay. Canadian Biosystems Engineering, 31-37.
    Petkova-Slipets, R., & Zlateva, P. (2017). Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials. De Gruyter, 52-57.
    Prasetyo, Y. H. (2009, March). Honai House Transformation. Pusat Penelitian dan Pengembangan Pemukiman Departemen Pekerjaan Umum.
    Pruteanu, M. (2010). Investigations Regarding The Thermal Conductivity of Straw. 10-16.
    Purser, D. (2009, September 30). Toxic Hazards to Fire Fighters, Including Effects of Fire Retardants, During Fires and Post-Fire Investigation Activities. Hatfield, United Kingdom: Hartford Environmental Research.
    Purser, D. A. (2011). Fire Toxicity and Toxic Hazard Analysis. Sixth International Seminar on Fire And Explosion Hazards. Leeds: University Of Leeds.
    Purser, D. A., & Maynard, R. (2016). Overview of Combustion Toxicology. Royal Society of Chemistry.
    Rumthe, F. T. (2018). Rumah Bundar. Jakarta: Badan Pengembangan dan Pembinaan Bahasa.
    Suryabrata, J. A., Ikaputra, Indrayadi, David Jan Cowan, & Rocio Rangel-Ruiz. (2007). New Honai Design Prototype in Yakuhimo Papua: A CFD Simulation Study. J. Archit Eng, 64-71.
    Tansakul, A., & Lumyong, R. (2008). Thermal properties of straw mushroom. Journal of Food Engineering, 91-98.
    Tavelli, S., Rota, R., & Derudi, M. (2014). A Critical Comparison Between CFD and Zone Models for the Consequence Analysis of Fires in Congested Environments. Chemical Engineering Transactions.
    Tebay, V. (2020). Potret Perempuan Suku Dani dalam Pembangunan di Kabupaten Jayawijaya Papua. Jurnal Inada, 35-61.
    Thomassen, O., Brattebo, G., & Rostrup, M. (2004). Carbon Monoxide Poisoning While Using a Small Cooking Stove in a Tent. The American Journal of Emergency Medicine, 204-206.
    Urbas, J., & Parker, W. (1993). Surface Temperature Measurements on Burning Wood Specimens in the Cone Calorimeter and the Effect of Grain Orientation. Fire and Materials, 205-208.
    Vigel, U., & Kams, M. (2011). Thermal Conductivity of Thatched (Reed) Roof in Composite Ceiling. V Environmental Engineering, 253-255.
    Widiati, I. R. (2016). Kajian Struktur Rumah Tradisional Papua. Jurnal Ilmiah Teknik dan Informatika, 18-23.
    You, Y., Rusmansara, E., Mansoben, J., & Poli, A. I. (2019). Relasi Gender Patriarki dan Dampaknya Terhadap Perempuan Hubula Suku Dani, Kabupaten Jayawijaya, Papua. Sosiohumaniora, 65-77.

    QR CODE