簡易檢索 / 詳目顯示

研究生: 賴千豐
Chien-feng Lai
論文名稱: 具streptavidin親合性標籤之glutathione-S-transferases 融合蛋白之研究
Study of glutathione-S-transferases fused with streptavidin-affinity peptides
指導教授: 陳秀美
Hsiu-mei Chen
口試委員: 朱義旭
Yi-hsu Ju
方翠筠
Tsuei-yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 137
中文關鍵詞: glutathione-S-transferase基因融合親和性胜肽卵白素
外文關鍵詞: glutathione-S-transferase, avidin, affinity peptides, gene fusion
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要延續先前利用壓電生物感測晶片及微陣列螢光分析系統對於streptavidin (SAv)進行隨機胜肽組合庫篩選之研究。將所篩得可與SAv結合的四個親合性胜肽,分別將之與glutathione-S-transferase (GST)的C端融合,建構出pGST/aj21、pGST/bj13、pGST/hm8以及pGST/strepII四個質體;最終,再將之轉入大腸桿菌內表現蛋白質(aJ21、bJ13、hM8及StrepII)。於SDS-PAGE研究中發現所表現aJ21的分子量小於29 kDa且與GST酵素相近,推測aJ21可能發生降解。最後經由MALDI-TOF與N端定序得知其外加序列以及部分GST酵素之C端都有被降解之可能。於活性分析中,於固定化或自由態之bJ13融合酵素其比活性都相當高;而hM8經由固定化之後,其比活性則僅次於bJ13。由SAv凝膠吸附分析得知bJ13及hM8為與SAv親和性較佳之融合酵素。綜合以上結果得知bJ13以及hM8的外加序列皆適用於當作親和固定化之親和性標籤,其中又以bJ13的外加序列最為理想其自由態比活性約為9 U/mg;而固定化酵素之比活性則為0.46 U/mg,最後測得之Kd值為2.61×10-6 M。


The previous researches employing biopanning microarrays, and piezoelectric biochips to screen streptavidin (SAv) affinity peptides from an E. coli flagellin-displayed random peptide library have yielded four potential peptides of high affinity(黃, 2002; 蔡, 2004). In this study, the peptides were each fused to the C terminus of glutathione-S-transferase (GST). By constructing four plasmids, named pGST/aj21, pGST/bj13, pGST/hm8, and pGST/strepII, four fusion proteins, aJ21, bJ13, hM8 and StrepII were respectively expressed in E. coli. The SDS-PAGE assay indicated that the molecular weight of aJ21 was smaller than 29 kDa and close to that of GST, suggesting that aJ21 may have been hydrolyzed by proteinase. The further analysis by MALDI-TOF and N-terminal sequencing revealed that both the fusion-tag peptide and a few residues at the C terminus of GST were possibly degraded. The enzymatic assay showed that bJ13 had the highest specific activity in both free and immobilized forms, and that the immobilized hM8 was slighty less active than bJ13. The adsorption study with SAv gels indicated that bJ13 and hM8 had better SAv affinities than the other proteins. It is concluded that the bJ13 and hM8 tag, peptides are suitable to be used as immobilization affinity tags, with the bJ13 one being the best one. The specific activity of the bJ13 fusion protein was about 9 U/mg in a free form and about 0.46 U/mg in an immobilized form, and its dissociation constant (Kd) to SAv gels was about 2.61×10-6 M.

目錄 中文摘要----------------------------------------------------------I 英文摘要---------------------------------------------------------II 致謝------------------------------------------------------------III 目錄------------------------------------------------------------ IV 圖目錄----------------------------------------------------------VIII 表目錄-----------------------------------------------------------XI 第一章 緒論------------------------------------------------------------------------------------ 1 第二章 文獻回顧 -----------------------------------------------------------------------------3 2. 1穀胱甘肽 S-轉移酵素 (glutathione S-transferase, GST)------------------------3 2. 1-1 GST ---------------------------------------------------------------------------3 2. 1-2 SjGST ---------------------------------------------------------------------------7 2. 2 隨機胜肽組合庫 ---------------------------------------------------------------------8 2. 2-1隨機胜肽組合庫 --------------------------------------------------------------8 2. 2-2噬菌體胜肽組合庫-----------------------------------------------------------10 2. 2-3細胞表面表現系統-----------------------------------------------------------13 2. 2-4質體表現系統-----------------------------------------------------------------16 2. 2-5非細胞體系表現系統--------------------------------------------------------17 2. 3 Streptavidin-biotin---------------------------------------------------------------------22 2. 3-1 Strept(avidin)-biotin系統---------------------------------------------------22 2. 3-1-1 Avidin---------------------------------------------------------------------22 2. 3-1-2 streptavidin (SAv)-------------------------------------------------------23 2. 3-1-3 biotin----------------------------------------------------------------------24 2. 3-2 SAv 親和性胜肽-------------------------------------------------------------27 2. 3-2-1 線狀親和胜肽-----------------------------------------------------------27 2. 3-2-2 環狀胜肽-----------------------------------------------------------------33 2. 3-2-3具奈米級親和常數之線狀胜肽 -------------------------------------34 2. 4 結晶學研究----------------------------------------------------------------------------37 2. 4-1 SAv和biotin之交互作用---------------------------------------------------40 2. 4-2 SAv 與線狀親和胜肽之交互作用----------------------------------------43 2. 4-3 SAv與環狀親和胜肽之交互作用-----------------------------------------45 2. 5 SAv親和性胜肽之應用-------------------------------------------------------------48 第三章 研究目的-----------------------------------------------------------------------------50 第四章 研究方法 ----------------------------------------------------------------------------51 4. 1實驗流程--------------------------------------------------------------------------------51 4. 1. 1質體之建構--------------------------------------------------------------------51 4. 1. 2原生與各融合酵素之生產及純化---------------------------------------- 52 4. 1. 3原生與各融合酵素之活性及其它性質分析-----------------------------52 4. 2實驗材料--------------------------------------------------------------------------------55 4. 3實驗藥品--------------------------------------------------------------------------------56 4. 4 實驗設備-------------------------------------------------------------------------------58 4. 5實驗步驟--------------------------------------------------------------------------------60 4. 5. 1 pGSTH質體之純化----------------------------------------------------------60 4. 5. 2載體之製備--------------------------------------------------------------------61 4. 5. 3 dsDNA片段之製備與黏合-------------------------------------------------63 4. 5. 4 DNA片段接合反應--------------------------------------------------------- 63 4. 5. 5 質體轉入E. coli細胞-------------------------------------------------------64 4. 5. 6 PCR篩菌---------------------------------------------------------------------- 64 4. 5. 7 蛋白質之生產----------------------------------------------------------------66 4. 5. 8原生及各融合蛋白質之純化-----------------------------------------------66 4. 5. 9 活性分析----------------------------------------------------------------------67 a. 自由態酵素---------------------------------------------------------------67 b. 固定化酵素---------------------------------------------------------------68 4. 5. 10 蛋白質濃度分析----------------------------------------------------------- 68 4. 5. 11 12.5 % SDS-PAGE蛋白質電泳 ---------------------------------------- 69 4. 5. 12 SAv凝膠吸附分析---------------------------------------------------------70 a. 原生及各融合酵素與SAv吸附的確認----------------------------- 70 b. Western blot--------------------------------------------------------------- 70 c. Native與denaturing沖提------------------------------------------------71 d. 平衡吸附分析------------------------------------------------------------71 4. 5. 13 aJ21之N端定序及分子量鑑定---------------------------------------72 第五章 結果與討論 -------------------------------------------------------------------------73 5. 1 限制酶活性之確認及質體之製備-------------------------------------------73 5. 2 融合基因之確認----------------------------------------------------------------74 5. 3 各純化蛋白之SDS-PAGE以及活性分析----------------------------------77 a. SDS-PAGE--------------------------------------------------------------------77 b. 酵素活性分析---------------------------------------------------------------78 5. 4 SAv凝膠吸附分析--------------------------------------------------------------86 5. 4. 1 原生及各融合酵素與SAv凝膠吸附的確認-------------------------86 5. 4. 2 SAv凝膠之native及denaturing eluant-------------------------------89 5. 4. 3 吸附常數分析-------------------------------------------------------------93 5. 5 aJ21融合酵素之N端定序及分子量鑑定 -------------------------------103 第六章 結論----------------------------------------------------------------------------------108 參考文獻 -------------------------------------------------------------------------------------110 附錄 I ----------------------------------------------------------------------------------------116

Buerger, M. J., “Elementary crystallography,” wiley New york, 60-63 (1963)

Cohen, B. and Skiena, S., “Efficient split synthesis for targeted libraries,” J. Comb. Chem., 2, 10-18 (2000)

Cornett, R., James, M. O., Henderson, G. N., Cheung, J., Shroads, A. L., and Stacpoole, P. W., “Inhibition of glutathione S-transferase ζ and tyrosine metabolism by dichloroacetate: A potential unifying mechanism for its altered biotransformation and toxicity,” Biochem. Biophys. Res. Commun., 262, 752–756 (1999)

Cull, M. G., Miller, J. F., and Schatz, P. J., “Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac repressor,” Proc. Natl. Acad. Sci. USA, 89, 1865-1869(1992)

Cwirla, S. E., Peters, E. A., Barrett, R. W., and Dower, W. J. “Peptides on phage:A vast library of peptides for identifying ligands,” Proc. Natl. Acad. Sci. USA, 87, 6378-6382 (1990)

Debeaujon, I., Peeters, A. J. M., Leon-Kloosterziel, K. M., and Koornneef, M., “The transparent testa12 gene of arabidopsis encodes a multidrug secondary transporter-
like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium,” Plant cell, 13, 853–871(2001)

Devlin, J. J., Panganiban L. C., and Devlin P. E., “Random peptide libraries: a source
of specific protein binding molecules,” Science, 249,404-405 (1990)

Diamandis, E. P. and Christopoulos, T. K., “The Biotin-(Strept)avidin system: Principles and applications in biotechnology,” Clin. Chem., 37, 625-636(1991)

Dixon, D. P., Lapthorn, A., and Edwards, R., “Plant glutathione transferases,” Genome Biol., 3, Reviews 3004.1-3004.10 (2002).

Doi, N. and Yanagawa, H., “STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro,” FEBS Lett., 457, 227-230(1999)

Freitag, S., Trong, I. L., Chilkoti, A., Klumb, L. A., Stayton, P. S., and Stenkamp, R. E., “Structural studies of binding site tryptophan mutants in the high-affinity streptavidin –biotin complex,” J. Mol. Biol., 279, 211-221 (1998)

Freitag, S., Trong, I. L., Klumb, L. A., Chu, V., Chilkoti, A., Stayon, P. S., and Stenkamp, R. E., “X-ray crystallographic studies of streptavidin muntants binding to biotin,” Biomol. Eng., 16, 13-19 (1999)

Giebel, L. B., Cass, R. T., Milligan, D. L., Young, D. C., Arze, R., and Johnson, C. R., “Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities,” Biochemistry, 34, 15430-15435 (1995)

Gonzalez, M., Bagatolli, L. A., Echabe, I., Arrondo, J. L. R., Argarana, C. E., Cantor, C. R., and Fidelio, G. D., “Interaction of biotin with streptavidin,” J. Biol. Chem., 272, 11288-11294 (1997)

Hammond, C., “The basics of crystallography and diffraction,” 2nd, ed., Oxford University Press., New york, 1-103 (2001)

Hendrickson, W. A., Pahler, A., Smith, J. L., Satow, Y., Merritt, E. A., and Phizackerey, R. P., “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. USA, 86, 2190-2194 (1989)

Hengsakul, M. and Cass, A. E. G., “Alkaline phosphatase-Strep tag fusion protein binding to streptavidin: resonant mirror studies,” J. Mol. Biol., 266, 621-632 (1997)

Katz, B. A., “Binding to protein targets of peptidic leads discovered by phage display: Crystal structures of streptavidin-bound linear and cyclic peptide ligands containing the HPQ sequence,” Biochemistry, 34, 15421-15429 (1995a)

Katz, B. A., Johnson, C. R., and Cass, R. T., “Structure-based design of high affinity streptavidin binding cyclic peptide ligands containing thioether cross-links,” J. Am. Chem. Soc., 117, 8541-8547 (1995b)

Katz, B. A., “Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH,” J. Mol. Biol., 274, 776-800 (1997)

Kay, B. K., Adey, N. B., He, Y. S., Manfredi, J. P., Mataragnon, A. H., and Fowlkes, D. M., “An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequence with affinity to selected targets,” Gene, 128, 59-65 (1993)

Keefe, A. D., Wilson, D. S., Seelig, B., and Szostak, J. W., “One-step purification of recombinant protein using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag,” Protein Expr. Purif., 23, 440-446 (2001)

Korndorfer, I. and Skerra, A., “Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site,” Protein Science, 11, 883-893 (2002)

Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. “A new type of synthetic peptide library for identifying ligand-binding activity,” Nature, 354, 82-84 (1991)

Lamla, T. and Erdmann, V. A., “Searching sequence space for high-affinity binding peptides using ribosome display,” J. Mol. Biol., 329, 381-388 (2003)

Lamla, T. and Erdmann, V. A., “The nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant protein,” Protein Expr. Purif., 33, 39-47 (2004)

Li, M., “Applications of display technology in protein analysis,” Bio/technol., 18, 1251-1256(2000)

Lu, Z., Murray, K. S., Cleave, V. V., Lavallie, E. R., Stahl, M. L., and Mccoy, J. M., “Experssion of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: A system designed for exploring protein-
Protein interaction,” Bio/Technol., 13, 366-372 (1995)

Mattheakis, L. C., Bhatt, R. R., and Dower, W. J., “An in vitro polysome display system for identifying ligands from very large peptide libraries,” Proc. Natl.Acad. Sci. USA, 91, 9022-9026(1994)

O'Neil, K. T., Hoess, R. H., Jackson, S. A., Ramachandran, N. S., Mousa S. A., and Degrado, W. F. “Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library,” Proteins: Struct. Funct. Genet., 14, 509-515 (1992)

Parmley, S. F. and Smith, G. P. “Antibody-selectable filamentous fd phage vectors: affinity purification of target genes,” Gene, 73, 305-318 (1988)

Pettersson, P. L., “Alpha-class glutathione transferases as steroid isomerases and scaffolds for protein redesign,” Uppsala: Acta univ. ups, 1-38 (2002)

Reznik, G. O., Vajda, S., Sano, T., and Cantor, C. R., “A streptavidin mutant with altered ligand-binding specificity,” Proc. Natl. Acad. Sci. USA, 95, 13525-13530 (1998)

Roberts, R. W. and Szostak, J. W., “RNA-peptide fusions for the in vitro selection of peptides and proteins,” Proc. Natl. Acad. Sci. USA, 94, 12297-12302(1997)

Sano, T. and Cantor, C. R., “Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin,” Proc. Natl. Acad. Sci. USA, 92, 3180-3184 (1995)

Schmidt, T. G. M. and Skerra, A., “The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for detection and purification of a functional Ig Fv fragment,” Protein Eng., 6, 109-122 (1993)

Schmidt, T. G. M., Koepke, J., Frank, R., and Skerra, A., “Molecular interaction between the strep-tag affinity peptide and its cognate target, streptavidin,” J. Mol. Biol., 255, 753-766 (1996)

Scott, J. K. and Smith, G. P., “Searching for peptide ligands with an epitope library,” Science, 249, 386-390(1990)

Sheehan, D., Meade, G., Foley, V. M., and Dowd, C. A., “Structure, function and evolution of glutathione transferases: implications for classification of non-
mammalian members of an ancient enzyme superfamily,” Biochem. J., 360, 1-16 (2001)

Skerra, A. and Schmidt, T. G. M., “Applications of a peptide ligand for streptavidin: the Strep-tag,” Biomol. Eng., 16, 79-86 (1999)

Smith, G. P., “Filamentous fuson phage: Novel expression vectors that display cloned
antigens on the virion surface,” Science, 228, 1315-1317 (1985)

Smith, G. P. and Petrenko, V. A., “Phage display,” Chem. Rev., 97, 391–410 (1997)

Smyth, M. S. and Martin, J. H. J., “X ray crystallography,” J. Clin. Pathol. : Mol. Pathol., 53, 8-14(2000)

Tawfik, D. S., and Griffiths, A. D., “Man-made cell-like compartments for molecular evolution,” Nature biotechnol., 16, 652-656 (1998)

Terpe, K., “Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems,” Appl. Microbiol. Biotechnol., 60, 523-533 (2003)

Voss, S. and Skerra, A., “Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification,” Protein Eng., 10, 975-982 (1997)

Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J., and Salemme, F. R., “Structural origins of high-affinity biotin binding to streptavidin,” Science, 243, 85-88 (1989)

Weber, P. C., Pantoliano, M. W., and Thompson, L. D., “Crystal structure and ligand-binding studies of a screened peptide complexed with streptavidin,” Biochemistry, 31, 9350-9354 (1992a)

Weber, P. C., Wendoloski, J. J., Pantoliano, M. W., and Salemme, F. R., “Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin,” J. Am.Chem. Soc., 114, 3197-3200 (1992b)

Wilchek, M. and Bayer, E. A., “Foreword and introduction to the book (strept)avidin–biotin system,” Biomol. Eng., 16, 1-4(1999)

Willats, W. G. T., “Phage display: practicalities and prospects,” Plant Mol. Biol., 50, 837–854 (2002)

Wilson, D. S., Keefe, A. D., and Szostak, J. W., “The use of mRNA display to select high-affinity protein-binding peptides,” Proc. Natl. Acad. Sci. USA, 98, 3750-3755 (2001)

Zang, X., Yu, Z., and Chu, Y. H., “Tight-binding streptavidin ligands from a cyclic peptide library,” Bioorg. Med. Chem. Lett., 8, 2327-2332 (1998)

何國傑,葉開溫,鄭石通及靳宗洛編譯“基因工程與生物技術概論:基因選殖及DNA分析”藝軒圖書出板社,19-27 (2003)。

陳愷悌“具金屬親和端之日本吸血蟲穀胱甘呔轉移酵素之製備、純化與固定化研究”台灣科技大學化學工程研究所碩士論文 (1998)。

羅森林“日本吸血蟲穀胱甘呔轉移酵素及其定點突變種之穩定性研究”台灣科技大學化學工程研究所碩士論文 (1998)。

李阿隸“CysSer定點突變對於Glutathione-S-Transferase特性與純化之影響探討”台灣科技大學化學工程研究所碩士論文 (2000)。

黃遵韓“具Streptavidin親和活性之篩選研究”台灣科技大學化學工程研究所碩士論文 (2002)。

蔡瑞明“奈米金與螢光呈色法對Streptavidin親和活性胜肽篩選之應用比較” 台灣科技大學化學工程研究所碩士論文 (2004)。

謝銘隆、吳天鳴、王宜君、朱延和“組合化學在醫藥開發上的應用”科學發展
353:56-61 (2002)

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE