簡易檢索 / 詳目顯示

研究生: 楊立啟
Li-Chi Yang
論文名稱: 利用標準0.18-μm CMOS製程實現金屬輔助光柵耦合器
Realization of Metal-assisted Grating coupler on unmodified 0.18-μm CMOS process
指導教授: 李三良
San-Liang Lee
恒勇智
Yung-Chih Heng
口試委員: 徐世祥
Shih-Hsiang Hsu
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 互補式金氧半製程光柵耦合器金屬反射鏡光互連多晶矽波導。
外文關鍵詞: CMOS process, Grating coupler, Metal mirror, Optical interconnect, Polysilicon waveguide
相關次數: 點閱:263下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著雲端高速運算的高度需求,資料中心開始採用主動式光纖光纜以降低功耗、提升頻寬。而光電積體電路為重要的核心技術,為了大量生產以利未來光通訊的普及,並考慮建立國內晶圓廠製程設計套件於CMOS光電積體電路雛形,本論文設計金屬輔助光柵耦合器實現於標準0.18-μm CMOS製程,以建立基本的光訊號耦合介面。本論文同時成功地以標準0.18-μm CMOS製程實現金屬輔助光柵耦合器。所設計之光柵耦合器經由模擬設計,於相同工作週期0.46下,調整光柵週期980 nm及940 nm,可分別設計中心波長於1585 nm及1565 nm;耦合效率則分別為-2.5 dB及-3.0 dB。考慮標準CMOS製程架構,場氧化層於多晶矽層下方僅約450 nm,導致光場耦合至矽基板,而無法侷限光場於多晶矽層波導,故本論文使用後製程移除矽基板,驗證多晶矽層光互連的功能性。量測所得光柵中心波長約1585 nm及1565 nm,與設計值相當;耦合效率則分別為-4.0 dB及-5.3 dB;3 dB頻寬則皆約為70 nm。經金屬輔助反射鏡提升出光方向性後,成功提升耦合效率分別3.0 dB及2.6 dB。由回截方法估計波導傳輸損耗則為111.9 dB/cm,光柵耦合器之中心波長對角度敏感度則約為7.42 nm/degree。


As applications of cloud computing services increase drastically, the demands of large capacity data centers make optical interconnects highly desired for connecting thousands of servers. The optical interconnects, like active optical cables, need to meet the requirements of low power consumption, low latency, compact, and large communication bandwidth. The optoelectronics integrated circuit (OIC) is the key technology to realize transceivers to meet the above requirements. In order to develop prototype process design kits for commercializing OICs using the standard CMOS process supported by semiconductor foundry, this thesis aims at realizing metal-assisted grating couplers with standard 0.18-μm CMOS process to build fundamental optical coupling I/O port interface.The proposed metal-assisted grating couplers can increase the coupling coefficient by recycling the downward diffracted light. They are designed and optimized with the optical waveguide simulation software. The grating coupler is designed to have the same duty cycle of 0.46 but different grating period of 980 nm and 940 nm for the center wavelength of 1585 and 1565 nm, respectively. The designed one-sided coupling efficiency is -2.5 dB and -3.0 dB for the two grating periods, respectively.The thickness of field oxide layer under the polysilicon layer for the standard CMOS process is only about 450 nm. This oxide layer is not thick enough to prevent the optical field guided in the polysilicon layer from leaking to the silicon substrate. Therefore, the silicon substrate was directly removed by post-process so that a well-confined optical interconnect functionality of the polysilicon layer could be verified and calibrated.For experimental demonstration, we have successfully realized metal-assisted grating coupler based on standard 0.18-μm CMOS process. For the grating couplers of 980-nm and 940-nm period, the measured one-sided coupling efficiency could achieve -4.0 dB at 1585 nm and -5.3 dB at 1565 nm, respectively. The Metal-assisted gratings can increase the coupling efficiency by 3.0 dB and 2.6 dB for the grating period of 980 nm and 940 nm, respectively. The optical waveguide transmission loss was estimated to be 111.9 dB/cm by using the cut-back method. When the incident angle to the grating coupler varies, the center wavelength of the grating coupler is shifted by 7.42 nm/degree.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 研究動機與元件技術介紹 1 1-1 前言 1 1-2 研究動機 1 1-3 標準互補式金氧半架構介紹 3 1-4 電晶體閘極多晶矽架構 5 1-5 光耦合機制介紹 6 1-4 光柵耦合器發展現況 7 1-5 波導理論介紹 9 1-5-1司乃耳定律 9 1-5-2平面波導理論 10 1-6 光柵理論介紹 13 1-6-1布拉格定律 13 1-6-2光柵耦合器理論介紹 14 1-7 論文架構 16 第二章 光柵耦合器模擬設計 17 2-1 模擬方法介紹 17 2-1-1薄膜模態匹配法(Film Mode Match method, FMM) 17 2-1-2時域有限差分法(Finite-Difference Time-Domain, FDTD) 19 2-2 模擬模型架構設計 22 2-2-1光柵耦合器結構(Grating coupler structure) 22 2-2-2光纖光源結構(Fiber source structure) 23 2-3 光柵耦合器模擬設計 25 2-3-1順向耦合光柵耦合器設計 26 2-3-2順向耦合背面金屬輔助反射鏡設計 30 2-3-3反向耦合光柵耦合器設計 34 2-3-4反向耦合背面金屬輔助反射鏡設計 37 第三章 標準CMOS光電積體電路佈局 41 3-1 晶片佈局軟體平台 41 3-2 歷年光波導晶片下線 43 3-2-1 T18-101E-76+m 43 3-2-2 T18-102A-A0080+m 45 3-2-3 T18-102A-A0100+m 47 3-2-4 U18-102A-A0007+m 48 3-2-5 U18-103A-N0001+m 50 第四章 光電積體電路後製程 52 4-1 移除矽基板之後製程 53 4-2 移除Al-Cu金屬層之後製程 56 第五章 元件量測結果 58 5-1 量測系統架構 58 5-2 摻雜條件分析 61 5-3 波導傳輸損耗分析 63 5-4 光柵耦合器分析 66 5-4-1 順向耦合光柵耦合器 66 5-4-2 反向耦合光柵耦合器 71 5-4-3 光縮模器長度最佳化 73 5-4-4 調整耦合角度對中心波長的影響 76 5-5 光互連功能性確認 78 5-5-1 考慮被動反射式光柵波導濾波器驗證 78 5-5-2 考慮近遠紅外波段CCD相機驗證 82 第六章 結論與未來發展方向 84 6-1 成果與討論 84 6-2 未來發展方向 87 參考文獻 89 附錄A 光柵耦合器模組程式碼 98 附錄B 光纖光源結構模組程式碼 102 附錄C Cadence-Virtuoso佈局設計詳細步驟 103

[1] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, pp. 1678-1687, Nov-Dec 2006.
[2] Luxtera | Luxtera Furthers Leadership Position in the HPC Interconnect Market with its 40 Gbps Optical Active Cable (http://www.luxtera.com/20080617140/luxtera-furthers-leadership-position-in-the-hpc-interconnect-market-with-its-40-gbps-optical-active.html)
[3] J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popovic, H. Li, J. Sun, et al., "Nanophotonic integration in state-of-the-art CMOS foundries," Opt Express, vol. 19, pp. 2335-46, Jan 31 2011.
[4] J. S. Orcutt and R. J. Ram, "Photonic Device Layout Within the Foundry CMOS Design Environment," IEEE Photonics Technology Letters, vol. 22, pp. 544-546, Apr 15 2010.
[5] J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanovic, and R. J. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express, pp. 7243-7254, 2012.
[6] V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters, vol. 28, no. 15, pp. 1302–1304, 2003.
[7] H.-L. Tseng, C.-W. Tseng, E. Chen, and N. Na, "A high-performance SOI grating coupler with completely vertical emission," SPIE Proceedings of Silicon Photonics IX, vol. 8990, paper 899007, San Francisco, California, USA, April 8 2014.
[8] A. S. Chadha, Y. Shuai, and W. Zhou, "High-order grating coupler for high-efficiency vertical to in-plane coupling," SPIE Proceedings of High Contrast Metastructures III, vol. 8995, paper 89950W , San Francisco, CA, USA, March 28 2014.
[9] C. Li, H. J. Zhang, M. B. Yu, and G. Q. Lo, "CMOS-Compatible Silicon Double-etched Apodized Waveguide Grating Couplers for High Efficient Coupling," Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, California, USA, March 17-21 2013.
[10] L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, et al., "A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography," IEEE Photonics Technology Letters, vol. 25, pp. 1358-1361, Jul 15 2013.
[11] Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, "Universal grating coupler design," SPIE Proceedings of Photonics North 2013, vol. 8915, paper 89150Y, Ottwa, Canada, June 3-5 2013.
[12] L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, "Optimizing Silicon-on-Oxide 2D-Grating Couplers," International Conference on Transparent Optical Networks (ICTON 2013), Cartagena, Spain, June 23-27 2013.
[13] C. Qiu, Z. Sheng, L. Li, P. Albert, A.-M. Wu, X. Wang, et al., "High efficiency grating couplers based on shared process with CMOS MOSFETs," Chinese Physics B, vol. 22, p. 024212, 2013.
[14] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, et al., "High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform," Optics Express, vol. 18, pp. 18278-18283, Aug 16 2010.
[15] G. Roelkens, D. Van Thourhout, and R. Baets, "SOI grating structure for perfectly vertical fiber coupling," presented at the Proc. of European Conference on Integrated Optics (ECIO) FC4, 2007.
[16] Z. Cheng and H. K. Tsang, "Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon on insulator waveguides," Opt Lett, vol. 39, pp. 2206-9, Apr 1 2014.
[17] L. Liu, M. Pu, K. Yvind, and J. r. M. Hvam, "High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure," Applied Physics Letters, vol. 96, p. 051126, 2010.
[18] Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. F. Jaeger, et al., "Fully etched grating coupler with low back reflection," SPIE Proceedings of Photonics North 2013, vol. 8915, paper 89150U, Ottwa, Canada, June 3-5 2013.
[19] S. Romero-Garcia, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, "Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector," Opt Lett, vol. 38, pp. 2521-3, Jul 15 2013.
[20] D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, et al., "Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides," Japanese Journal of Applied Physics, vol. 45, pp. 6071-6077, 2006.
[21] A. S. Sudbo, "Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides", Pure and Applied Optics, vol. 2, pp. 211-233, 1993.
[22] Stephen D. Gedney, Introduction to the Finite Difference Time Domain (FDTD) Method for Electromagnetics. Morgan & Claypool publishers, 2011.
[23] Allen Taflove, Computational electromagnetics: The Finite Difference Time Domain Method. Boston: Artech House, 2005.
[24] T. Tamir and S.T. Peng, "Analysis and design of grating couplers," Appl. Phys. 14, pp. 235-254, November 1977 (INVITED PAPER).
[25] K. R. Whight, P. Blood, and K. H. Nicholas, "Implanted high value resistors," Solid-State Electronics, vol. 19, pp. 1021-1027, 1976.
[26] J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,”Appl. Phys. Lett. 68(15), pp. 2052–2054, 1996.
[27] J. S. Orcutt, A. Khilo, C. W. Holzwarth, M. A. Popovic, H. Li, J. Sun, et al., "Nanophotonic integration in state-of-the-art CMOS foundries," Opt. Express, vol. 19, pp. 2335-46, Jan 31 2011.
[28] C. R. Doerr, L. Chen, C. Young-Kai, and L. L. Buhl, "Wide Bandwidth Silicon Nitride Grating Coupler," IEEE Photonics Technology Letters, vol. 22, pp. 1461-1463, 2010.
[29] X. Chao, T. Hon Ki, C. Zhenzhou, and C. Chun-Kit, "Increasing the grating coupler bandwidth with a high numerical-aperture fiber," in IEEE 11th International Conference on Group IV Photonics (GFP), pp. 100-101, Paris, France, Aug 27-29 2014.
[30] Y. Wang, "Grating coupler Design Based On Silicon-On-Insulator," Master thesis, Electrical and Computer Engineering, The University of British Columbia, Vancouver, 2013.
[31] K. Lin, Y. Hung, C. Wu, C. Wang, and Y. Chen, "Narrowband Waveguide Bragg Gratings with Fully-etched Side Corrugations and Large Fabrication Tolerance," in Conference on Lasers and Electro-Optics(CLEO), paper SM3I.5, San Jose, USA, May 10-15 2015.
[32] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, et al., "Building manycore processor-to-DRAM networks with monolithic silicon photonics," 16th Annual IEEE Symposium on High-Performance Interconnects, pp. 21-30, Stanford, California, USA, Aug 26-28 2008.
[33] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, et al., "Building Many-Core Processor-to-Dram Networks with Monolithic Cmos Silicon Photonics," IEEE Micro, vol. 29, pp. 8-21, Jul-Aug 2009.
[34] F. A. Benson, "Waveguide attenuation and its correlation with surface roughness," Proceedings of the IEEE - Part III: Radio and Communication Engineering, vol. 100, pp. 85-90, 1953.
[35] B. Wohlfeil, S. Burger, C. Stamatiadis, J. Pomplun, F. Schmidt, L. Zimmermann, et al., "Numerical simulation of grating couplers for mode multiplexed systems," SPIE Proceedings of Integrated Optics: Devices, Materials, and Technologies XVIII, vol. 8988, paper 89880K, San Francisco, California, USA, 2014.
[36] C. Hongda, H. Beiju, Z. Zanyun, and Z. Zan, "Vertical grating coupler-based silicon photonic devices and photonic integrated circuits on CMOS-compatible SOI platform," in IEEE 10th International Conference on Group IV Photonics (GFP), pp. 55-56, Seoul, Korea (South), Aug 28-30 2013.
[37] Y. H. Ding, C. Peucheret, and H. Y. Ou, "Ultra- High- Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal," Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, Japan, June 30-July 4 2013.
[38] C. Galland, A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, et al., "A CMOS-compatible silicon photonic platform for high-speed integrated opto-electronics," SPIE Proceedings of Integrated Photonics: Materials, Devices, and Applications II, vol. 8786, paper 87670G, Grenoble, France, 2013.
[39] J. Feng and Z. Zhou, "High efficiency compact grating coupler for integrated optical circuits," SPIE Proceedings of Passive Components and Fiber-based Devices III, vol. 6351, paper 63511H, Gwangju, USA, 2006.
[40] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides," IEEE Photonics Technology Letters, vol. 16, pp. 1661-1663, 2004.
[41] R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, et al., "Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure," Opt Lett, vol. 35, pp. 3243-5, Oct 1 2010.
[42] C. W. Holzwarth, J. S. Orcutt, H. Q. Li, M. A. Popovic, V. Stojanovic, J. L. Hoyt, et al., "Localized Substrate Removal Technique Enabling Strong-Confinement Microphotonics in Bulk Si CMOS Processes," Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference(CLEO/QELS), vols 1-9, pp. 1061-1062, San Jose, California, USA, May 4-9 2008.
[43] J. Kang, Y. Atsumi, T. Sifer, Y. Hayashi, T. Amemiya, N. Nishiyama, et al., "Inter-Layer Grating Coupler with Metal Mirrors for 3D Optical Interconnects," Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) , Kyoto, Japan, June 30-July 4 2013.
[44] M. Gad, W. Shi, L. Chrostowski, and N. A. F. Jaeger, "A ring resonator optical amplitude modulator using coupling control via carrier injection in the coupler," SPIE Proceedings of Photonics North 2012, vol. 8412, paper 84121B, Montreal, Canada, June 6-8 2012.
[45] C. Kopp, S. Bernabe, B. Ben Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, et al., "Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 498-509, May-Jun 2011.
[46] Y. Kuan Pei, A. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, et al., "Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides," Journal of Lightwave Technology, vol. 27, pp. 3999-4008, 2009.
[47] G. Dabos, D. Kalavrouziotis, J. Bolten, A. Prinzen, N. Pleros, and D. Tsiokos, "Cost-effective single-etched TM-mode SOI grating couplers for broadband perfectly vertical coupling," SPIE Proceedings of Silicon Photonics IX, vol. 8990, paper 899009, San Francisco, California, USA, 2014.
[48] K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Applied Physics Letters, vol. 77, p. 1617, 2000.
[49] A. E. J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, et al., "Review of Silicon Photonics Foundry Efforts," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, Jul-Aug 2014.
[50] A. Markina, "Design and Simulation for the Fabrication of Integrated Semiconductor Optical Logic Gates," Doctor of Philosophy, Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2005.
[51] D. Marris-Morini, L. Virot, C. Baudot, J. M. Fedeli, G. Rasigade, D. Perez-Galacho, et al., "A 40 Gbit/s optical link on a 300-mm silicon platform," Opt Express, vol. 22, pp. 6674-9, Mar 24 2014.
[52] K. Mehta, J. Orcutt, and R. Ram, "Enhanced Two-Photon Absorption in Polycrystalline Silicon," Conference on Lasers and Electro-Optics (CLEO), Baltimore, Maryland, USA, May 1-6 2011.
[53] A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, et al., "A Grating-Coupler-Enabled CMOS Photonics Platform," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 597-608, May-Jun 2011.
[54] J. S. Orcutt, "Scaled CMOS Photonics," presented at the Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching(IPR), Monterey, California, United States, July 25-28 2010.
[55] J. S. Orcutt, A. Khilo, M. A. Popovic, C. W. Holzwarth, B. Moss, H. Q. Li, et al., "Demonstration of an Electronic Photonic Integrated Circuit in a Commercial Scaled Bulk CMOS Process," Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference(CLEO/QELS), vols 1-9, pp. 1303-1304, May 4-9 2008.
[56] J. S. Orcutt and R. J. Ram, "Photonic Device Layout Within the Foundry CMOS Design Environment," IEEE Photonics Technology Letters, vol. 22, pp. 544-546, Apr 15 2010.
[57] J. S. Orcutt, S. D. Tang, S. Kramer, H. Q. Li, V. Stojanovic, and R. J. Ram, "Low-Loss Polysilicon Waveguides Suitable for Integration within a High-Volume Electronics Process," Conference on Lasers and Electro-Optics (CLEO), Baltimore, Maryland, USA, May 1-6 2011.
[58] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, vol. 181, pp. 687-702, Mar 2010.
[59] J.-M. Fédéli, L. Fulbert, D. Van Thourhout, P. Viktorovitch, I. O'Connor, G.-H. Duan, et al., "HELIOS: photonics electronics functional integration on CMOS," SPIE Proceedings of Silicon Photonics and Photonic Integrated Circuits II, vol. 7719, paper 771907, Brussels, Belgium, May 12 2010.
[60] G. Roelkens, D. Van Thourhout, and R. Baets, "High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay," Opt Express, vol. 14, pp. 11622-30, Nov 27 2006.
[61] G. Roelkens, D. Van Thourhout, and R. Baets, "High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers," Optics Letters, vol. 32, p. 1495, 2007.
[62] J. Covey and R. T. Chen, "Surface normal coupling to multiple-slot and cover-slotted silicon nanocrystalline waveguides and ring resonators," SPIE Proceedings of Optical Interconnects XIV, vol. 8991, paper 89911A, San Francisco, California, USA, February 1 2014.
[63] F. Lopez Royo, A. Brimont, C. Vagionas, G. Dabos, N. Pleros, K. Vyrsokinos, et al., "Fabrication of modulators and 2×2 switches in SOI based on the carrier depletion mechanism for optical interconnects," SPIE Proceedings of Optical Interconnects XIV, vol. 8991, paper 899112, San Francisco, California, USA, February 1 2014.
[64] P. V. Mena, B. Stone, E. Heller, D. Herrmann, E. Ghillino, and R. Scarmozzino, "Mixed-level optical-system simulation incorporating component-level modeling of interface elements," SPIE Proceedings of Optical Interconnects XIV, vol. 8991, paper 899111, San Francisco, California, USA, February 1 2014.
[65] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, et al., "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE Journal of Quantum Electronics, vol. 38, pp. 949-955, Jul 2002.
[66] T. M. Ting Ma, W. Y. Weimin Ye, X. Y. Xiaodong Yuan, and W. X. Wei Xu, "Way of designing a periodic grating coupler with fully etched slots," Chinese Optics Letters, vol. 11, pp. S21301-321303, 2013.
[67] B. Turker, H. Guner, S. Ayas, O. O. Ekiz, H. Acar, M. O. Guler, et al., "Grating coupler integrated photodiodes for plasmon resonance based sensing," Lab Chip, vol. 11, pp. 282-7, Jan 21 2011.
[68] O. Gili-de-Villasante, P. Tcheg, B. Wang, A. Suna, G. Giannoulis, I. Lazarou, et al., "Design, fabrication, and characterisation of fully etched TM grating coupler for photonic integrated system-in-package," SPIE Proceedings of Silicon Photonics and Photonic Integrated Circuits III, vol. 8431, paper 84310G, Brussels, Belgium, April 16 2012.
[69] J. Wang, C. Gui, C. Li, Q. Yang, J. Sun, and X. Zhang, "On-Chip Demultiplexing of Polarization and Wavelength Multiplexed OFDM/OQAM 64/128-QAM Signals using Silicon 2D Grating Coupler and Microring Resonators," presented at the Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, California, USA, March 9-13 2014.
[70] J. C. Wirth, "Silicon grating couplers for low loss coupling between optical fiber and silicon nanowires," Master thesis, Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, 2011.
[71] B. Wohlfeil, C. Stamatiadis, L. Zimmermann, and K. Petermann, "Compact Fiber Grating Coupler on SOI for Coupling of Higher Order Fiber Modes," Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, California, USA, March 19-21 2013.
[72] Y. L. Xiong and W. N. Ye, "Silicon MMI-Coupled Slotted Conventional and MZI Racetrack Microring Resonators," IEEE Photonics Technology Letters, vol. 25, pp. 1885-1888, Oct 1 2013.
[73] W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, "CMOS-Compatible Polarization Splitting Grating Couplers With a Backside Metal Mirror," IEEE Photonics Technology Letters, vol. 25, pp. 1395-1397, Jul 15 2013.

QR CODE