簡易檢索 / 詳目顯示

研究生: 劉思妤
Ssu-yu Liu
論文名稱: 鈦酸鋇系高介電陶瓷電容材料之電性分析與其微觀結構之研究
Study on the relationship between Electrical Properties and Microstructures of High Capacitance BT-Based Ceramics
指導教授: 周振嘉
Chen-chia Chou
口試委員: 郭東昊
Dong-Hau Kuo
朱立文
Li-Wen Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 鈦酸鋇電容壓電
外文關鍵詞: Barium Titanate, capacitance, piezoelectric
相關次數: 點閱:218下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近期發現鈦酸鋇基電容在交流電場下因其壓電性質產生之變形將產生噪音。因此維持高介電值同時降低壓電性之方法將成為新的研究課題。本實驗使用傳統固態氧化物法備製樣品,摻雜氧化鎂(MgO)、二氧化錳(MnO2)與氧化鈰(CeO2)進入鈦酸鋇作為電性改良劑,探討影響鈦酸鋇微觀結構與其介電、鐵電與壓電性質之因素。
實驗結果顯示:所有試片皆為立方晶BT主相,除14Mn因燒結溫度過高形成27.1%之六方晶BT。凡加入1mol % MgO後可使晶粒大小控制在1μm以下,而添加1mol% MnO2則會出現異常晶粒成長的現象,即使CeO2添加也無法抑制。添加Mg/Ce可有效抑制c/a ratio、有助於核殼或雙相結構存在能使升溫介電曲線平坦化,而Mg/0.5Ce參雜之樣品因氧空缺減少、CeO2貢獻較多極化值與其偶極在電場下轉換能力好,可有效維持室溫介電值在3770,摻雜MnO2則否。由P-E曲線數據得知所有樣品皆呈現硬添加的效果且Ps降低,但0.5mol%CeO2的摻雜有助於維持Ps值。而燒結溫度過高或MnO2含量不適當,部分樣品材料內部有少量β-BaMnO3產生,使低電場區域曲線有內縮的情形。用P與E值轉換之εAC,其最大值越大表示材料內部等向性高,因此提供其電域轉動的電場相當一致。不管純BT摻雜多少比例之MgO、MnO2與CeO2,εDC之衰退比例皆由93%降至60%~80%之間,且d33與kp皆降低。Mn/Ce共摻雜樣品之晶粒與c/a ratio較大,因此壓電性質(d33/ kp)降低較少。由以上電性數據歸納出,Ps是提供介電或壓電性質的來源,但晶粒大小、晶體結構與添加物的性質對鈦酸鋇基電容材料之鐵電、壓電與介電性質皆有影響。


BaTiO3(BT)-based dielectrics exhibit a distortion under electric field may result in sound emission due to the piezoelectric effect. Therefore, maintaining high dielectric property and reducing piezoelectric effect at the same time will become a new focus area. BaTiO3 capacitor materials doped with MgO, MnO2 and CeO2 additives as electrical optimizer, were synthesized by conventional solid-state reaction. In this study, we focus on the correlations between microstructures and electrical properties of the BT-based dielectrics.
The results show that X-ray analysis reveals that all BT-doped specimens are tetragonal phase except for MnO2-doped BT samples which contained 27.1% hexagonal phase. SEM images show that MgO addition can suppress effectively the grain size of less than 1μm, but MnO2 addition cause abnormal grain growth, while does not vary significantly in grain size by CeO2 addition. Besides, The Mg/Ce co-doped BT samples not only inhibit the c/a ratio but also lead to form a core-shell microstructure or duplex-structured, and hence flat the D-T curves. The Mg/0.5Ce co-doped BT samples exhibit a maximum dielectric constant at room temperature owing to fewer oxygen vacancies, more polarizations and excellent domain mobility. However, the MnO2-doped samples show the opposite results. The P-E behavior shows that all doped samples possess “hard” ferroelectric properties and accompany with a lower value of Ps than pure BT. The hysteresis loops are constricted, which caused by the formation of β-BaMnO3 inside the materials. Furthermore, it was found that the degree of internal isotropic is high when the materials possess a higher value of εAC, while the domain polarizations can be moved well at the electric field of εAC. It is noted that the doped samples can reduce the deteriorate of εDC from 93% to 60~80%, but cause both d33 and kp decreased simultaneously. However, the Mn/Ce co-doped BT can’t reduce the piezoelectric properties since they have a larger grain size and c/a ratio.
It can be concluded that the dielectric or piezoelectric properties, which contributed by Ps, of the doped BT capacitor materials are influenced by grain size, crystal structures and dopants.

中文摘要 I Abstrate II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 基礎理論與文獻回顧 3 2.1 鈦酸鋇之晶體結構 4 2.2 電域(Domain) 6 2.3 鈦酸鋇之電性 7 2.3.1 鈦酸鋇之鐵電性質 7 2.3.2 鈦酸鋇之壓電性質 9 2.3.3 鈦酸鋇之介電性質 11 2.4 元素摻雜鈦酸鋇之電性影響與取代機制 15 2.4.1 取代機制 16 2.5 鈦酸鋇基高介電電容材料面臨之問題與解決方法 17 第三章 實驗方法與步驟 20 3.1 實驗步驟 22 3.1.1 粉體備製流程 22 3.1.2 成型(Forming) 24 3.1.3 燒結(Sintering) 24 3.1.4電極塗佈 24 3.1.5 極化處理(Poling) 24 3.2 基本性質量測 25 3.2.1 密度量測 25 3.2.2 X光繞射 25 3.2.3 掃描式電子顯微鏡(SEM) 25 3.3 電性量測 26 3.3.1 介電常數對溫度(D-T)曲線量測 26 3.3.2 電滯曲線(P-E)量測 27 3.3.3 介電常數對交流電場之(εAC-EAC)曲線量測 27 3.3.4 介電常數對直流電場之(εDC-EDC)曲線量測 27 3.3.5 壓電電荷係數(Piezoelectric charge constant, d33)量測 28 3.3.6 機電耦合因子(electromechanical coupling factor, kp)量測 28 第四章 結果與討論 30 4.1 試片燒結密度分析 30 4.2 X光繞射分析 34 4.3 鈦酸鋇添加MgO與CeO2微觀、介電與鐵電之分析 42 4.3.1鈦酸鋇添加MgO與CeO2之SEM與D-T分析 42 4.3.2鈦酸鋇添加MgO與CeO2之P-E、εAC-EAC和εDC-EDC分析 47 4.4鈦酸鋇添加MnO2與CeO2微觀、介電與鐵電之分析 54 4.4.1鈦酸鋇添加MnO2與CeO2之SEM與D-T分析 54 4.4.2鈦酸鋇添加MnO2與CeO2之P-E、εAC-EAC和εDC-EDC分析 58 4.5 共摻雜MgO、MnO2與CeO2之鈦酸鋇微觀、介電與鐵電分析 63 4.5.1共摻雜MgO、MnO2與CeO2之鈦酸鋇SEM與D-T分析 63 4.5.2共摻雜MgO、MnO2與CeO2之鈦酸鋇P-E、εAC-EAC和εDC-EDC分析 68 4.6 壓電性質分析 73 第五章 結論 79 第六章 參考文獻 82

1. C.A. Randall, R.E. Newnham, and L.E. Cross , “History of the First Ferroelectric Oxide, BaTiO3, ”
2. 謝煜弘, “電子材料,” 新文京開發出版股份有限公司, 第三版, pp.228(2004)
3. 梁豐贊, “由主機板上受壓電效應影響之積層陶瓷電容所造成的高頻異音實驗探討,” 臺灣大學論文, 民國98年
4. 陳正劭, “X7R電容材料微觀結構與介電特性之研究,” 台灣科技大學論文, 民國96年7月
5. D. E. Rase and R. Roy, “Phase Equilibria in the System BaO–TiO2,” J. Am. Ceram. Soc., Vol. 38, pp. 102-113 (1955).
6. B. Jaffe, W. R. Cook, JR. and H. Jaffe, “Piezoelectric ceramics, ” Academic Press: London, New York, 1971.
7. I. Fujii, M. Ugorek, Y. Han and S. Trolier-McKinstry, “Effect of Oxygen Partial Pressure During Firing on the High AC Field Response of BaTiO3 Dielectrics,” J. Am. Ceram. Soc.,Vol. 93 [4] , pp. 1081–1088 (2010)
8. 高至鈞, 汪建民, “壓電陶瓷的原理與發展趨勢”, 陶業, pp. 47-61, (1989)
9. D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics”, Rep. Prog. Phys., Vol. 61, pp. 1267-1324 (1998)
10. 許宏全, “溶膠-凝膠法技術製備SrBi4Ti4O15(SBT)薄膜之研究, ” 南台科技大學論文, 民國98年
11. G. Arlt, “The influence of microstructure on the properties of ferroelectric ceramics,” Ferroelectrics, Vol. 104, pp. 217-227(1990)
12. 吳朗, “電子陶瓷 : 壓電 ,” 全欣資訊, 民國83年
13. C. A. Randall, N. Kim, J. P. Jucera, W. Cao, and T. R. Shrout, “Intrinsic and extrinsic size effects in fine-grained morphotropic-phase boundary lead zirconate titanate ceramics,” J. Am. Ceram. Soc., 81 [3], pp. 677-655, 1998.
14. 吳朗, “電子陶瓷 : 壓電 ,” 全欣資訊, pp.3-30~3-35,民國83年
15. E. J. Brajer, H. Jaffe, and F. Kulcsa, “Shift of the Transition Points in Barium Titanate by Partial Substitution. ,” J. Acoust. Soc. Am., pp. 117(1952)
16. W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
17. G. Arlt, D. Hennings and G. de With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., Vol.58(4), pp. 1619-1625(1985)
18. I. Fujii, M. Ugorek, and S. Trolier-McKinstry, “Grain size effect on the dielectric nonlinearity of BaTiO3 ceramics,” J. Appl. Phys., Vol. 107, 104116 (2010)
19. F. Jona, G. Shirane, “Ferroelectric crystals, ” Dover Publications, INC., New York, 1993.
20. D. Hennings, “Barium Titanate Based Ceramics Materials for Dielectric Use,” Int. J. High Tech. Ceram., Vol. 3, pp. 91-111 (1987).
21. H. Kishi, Y. Mizuno and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn, J. Appl. Phys., Vol. 42, pp. 1-15 (2003).
22. 吳朗, “電子陶瓷 : 介電 ,” 全欣資訊, pp.171,民國83年
23. J. H. Hwang and Y. H. Han, “Dielectric Properties of (Ba1-xCex)TiO3,” Jpn. J. Appl. Phys., Vol. 39, pp. 2701-2704(2000)
24. Y. Y. Yeoh, H. Jang and H. I. Yoo, “Defect structure and Fermi-level pinning of BaTiO3 co-doped with a variable-valence acceptor (Mn) and a fixed-valence donor (Y) ,” Phys. Chem. Chem. Phys., Vol.14, pp. 1642–1648 (2012)
25. X. Wang, M. Gua, B. Yang, S. Zhu and Wenwu Cao, “Hall effect and dielectric properties of Mn-doped barium titanate,” Microelectron. Eng. , Vol.66, pp. 855–859(2003)
26. S. H. Cha and Y. H. Han, “Effects of Mn doping on dielectric properties of Mg-doped BaTiO3 ,” J. Appl. Phys. ,Vol. 100, 104102 (2006)
27. Y. Tsur, A. Hitomi, I. Scrymgeour and C. A. Randall, “Site Occupancy of Rare-Earth Cations in BaTiO3”, Jpn. J. Appl. Phys., Vol. 40, pp. 255-258(2001).
28. Y. Tsur, T. D. Dunbar and C. A. Randall, “Crystal and defect chemistry of rare earth in BaTiO3,” J. Electroceram., Vol. 7, pp. 25-34(2001)
29. 李瑋志, “(Bi0.5Na0.5)TiO3 無鉛壓電陶瓷系統之結構與介電性質之關聯性,” 成功大學論文, 民國98年7月
30. “NPO,X5R,X7R,Y5V ceramic chip capactitors,” Koa speer electrics, Inc.
31. T. Noji, K. Kawasaki, H. Sano, N. Inoue and Karun Malhotra, “Development of Multilayer Ceramic Capacitors with Low Microphonics,” CARTS USA, (2006)
32. M. Laps, R. Grace, B. Sloka, J. Prymak, X. Xu, P. Pinceloup, A. Gurav, M. Randall, P. Lessner and A. Tajuddin, “Capacitors for Reduced Microphonics and Sound Emission,” (2007)
33. J. Prymak and K. Lai, “New Products Being Developed for Flex Crack Reduction and Elimination,” KEMET Electronics Corp., Arrow Asian Times Article
34. J. Zhi., Y. Zhi. Yu and A. Chen, “Crystalline structure and dielectric behavior of(Ce,Ba)TiO3 ceramics,” J. Mater. Res., Vol. 17, No. 11 , pp. 2787-2793 (2002).
35. Y. Park and H. G. kim, “The microstructure analysis of cerium-modified barium titanate having core-shell structured grains,” Ceram. Int., Vol. 23, pp. 329-336(1997)
36. A. Chen, J. Zhi., Y. Zhi. Yu P. M. Vilarinho and J. L. Baptista, “Synthesis and characterization of Ba(Ti1-xCex)O3 ceramics,” J. Eur. Ceram. Soc., Vol. 17, pp. 1217-1221(1997)
37. M. M. A. Issa, N. M. Molokhia and Z. H. Dughaish, “Effect of cerium oxide (CeO2) additives on the dielectric properties of BaTiO3 ceramics”, J. Phys. D: Appl. Phys., Vol. 16, pp. 1109-1114(1983)
38. J. H. Hwang and Y. H. Han, “Dielectric Properties of (Ba1-xCex)TiO3”, Jpn. J. Appl. Phys., Vol. 39, pp. 2701-2704(2000)
39. H.W. Nesbitt and D. Banerjee, “Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation,” Am. Mineral. ,Vol.83, pp. 305–315(1998)
40. 許雅琪“六方晶鈦酸鋇Ba(Ti1-xRx)O3陶瓷(R=Mn、Fe、Co、Ni、Zn、Mg、In)之緻密化行為、微結構及微波介電特性,” 台北科技大學論文, 民國95年
41. H. T. Langhammer., T. Muller, A. Polity, K. H. Felgner, H. P. Abicht,“On the crystak and defect structure of manganese-doped barium titanate ceramics.”,Mat. Lett., Vol.26, pp. 205-210. (1996)
42. R. D. Shannon, “Revised Effective Ionic Radii and Systematic
Studies of Interatomic Distance in Halides and Chalcogenides,” Acta Crystallogr., Vol. A32, pp. 751-767 (1976).
43. Y. Noguchi, S. Teranishi, M. Suzuki and M. Miyayama, “Electric-field-induced giant strain in Ba0.5Na0.5TiO3-based single crystal:Influence of high–oxygen -pressure annealing, ” J. Ceram. Soc.Jpn, Vol.1, pp. 32-36(2009)
44. S. H. Yoon, C. A. Randall and K. H. Hur, “Effect of acceptor concentration on the bulk electrical conduction in acceptor (Mg)-doped BaTiO3,” J. Appl. Phys., Vol. 107, 103721(2010)
45. D. Makovec, Z. Samardaija and D. Kolar, “Solid Solubility of Cerium in BaTiO3, J. Solid State Chem., Vol.123, pp. 30-38 (1995)
46. 高育儒, “0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 壓電材料的晶粒大小對晶體結構與電性質之影響 ,” 成功大學論文, 民國97年
47. 梁瑞虹,董顯林,陳瑩,曹飛,王永齡, “直流偏置電場下BaTiO3基陶瓷介電常數非線性機理的研究,” 物理學報, 第54卷,第10期(2005)
48. 楊傳仁,苟富均,秦廣宇,周大雨,游文南, “BaTiO3系陶瓷電壓非線性特性研究,” 矽酸鹽學報,06期(1999)
49. 吳朗, “電子陶瓷 : 介電 ,” 全欣資訊, pp.161-163,民國83年
50. Y. C. Huang and W. H. Tuan, “Exaggerated grain growth in Ni-doped BaTiO3 ceramics ,” Mater. Chem. Phys., Vol. 105, pp. 320-324(2007)
51. S. H. Wu, S. A. Wang, L. Y. Chen and X. Y Wang, , “Effect of Mn substitutions on dielectric properties of high dielectric constant BaTiO3-based ceramic,” J Mater Sci: Mater Electron, Vol. 19, Num. 6,pp. 505-508 (2008)
52. I. Fujii, M. Ugorek and S. Trolier-McKinstry, “Grain size effect on the dielectric nonlinearity of BaTiO3 ceramics ,” J. Appl. Phys., Vol. 105, 104116(2010)
53. W. F. Liu, W. Chen, Li. Yang, L. X. Zhang, Y. Wang, C. Zhou, S. T. Li, and X.B. Ren, “Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain,” Appl. Phys. Lett. , Vol. 89, 172908(2006)
54. 陳宜君,“固態中電與磁的對話-多鐵性材料物理,” 物理雙月刊,卅一卷,第五期, pp. 459-460 (2009)
55. 楊展其,梁振偉,朱英豪,“多鐵材料物理鉍鐵氧之磁電耦合與應用,” 物理雙月刊,卅一卷,第五期, pp. 468-475(2009)
56. S. Satapathy, M. K. Singh, Pragya Pandit, and P. K. Gupta,“Relaxor ferroelectric behavior of BaMnO3 (2H) at room temperature,” Appl. Phys. Lett., Vol. 100, 042904 (2012)
57. Y. H. Song, J. H. Hwang and Y. H. Han , “Effects of Y2O3 on Temperature Stability of Acceptor-Doped BaTiO3 ,” Jpn. J. Appl. Phys.,Vol. 44, No. 3, pp. 1310–1313(2005)
58. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 2003.

QR CODE