簡易檢索 / 詳目顯示

研究生: 林若彤
Ruo-Tung Lin
論文名稱: 密度泛函理論應用於鋰離子電池添加劑2-氰基呋喃成膜機制的研究
A DFT Study on the Reduction of 2-Cyanofuran as SEI Forming Additive in Lithium Ion battery
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡政達
Jeng-Da Chai
何嘉仁
Jia-Jen Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 136
中文關鍵詞: 鋰離子二次電池添加劑鈍性膜
外文關鍵詞: Lithium-ion batteries, additives, SEI
相關次數: 點閱:310下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鋰離子電池被視為最具潛力的能源電池,具有工作電壓高、能量密度大、循環受命長等特點。為促進鋰離子電池在電動車上的應用普及化,如何有效地改善其安全性能為一大關鍵,廣泛且具有經濟效益的解決方法為電解液添加劑的使用。本研究著重於探討具有聚合性質之成膜添加劑的還原反應機制及性質,成膜添加劑能夠在首次充放電下,於碳極表面發生自由基/陰離子聚合反應,先行還原分解,並先成一具有良好穩定性的固體電解質界面膜 (SEI),有效抑制溶劑分子於碳極還原,因而避免產生損害電極之中間產物和氣體,並遏止鋰離子溶劑化合物 (Li+(S)n ,S = solvent, n = 1~4)嵌入碳極所造成的電極崩解。
    為闡明添加劑2-氰基呋喃(2-cyanofuran, 2CF)在碳酸丙烯酯 (Propylene carbonate, PC)電解液形成SEI膜的電化學聚合反應機制,本研究使用密度泛函理論中的B3LYP方法,以6-311++G**為基組,在考慮溶劑體系下,進行成膜添加劑2CF的模擬分析,探討其在單電子與雙電子還原分解的動力學與熱力學性質。計算結果顯示2CF傾向雙電子還原分解反應,還原後主要進行CN-分離與開環二反應路徑,有效地於碳極表面還原分解、聚合,進而抑制溶劑的共嵌入反應。
    第二部份考慮鋰鹽在電解液系統中對添加劑還原分解機制的影響。鋰離子和添加劑分子於電解液中形成一離子添加劑化合物((CFn-)Li+,n = 1~2),計算結果指出2CF還原產生陰離子自由基2CF-,再與鋰離子反應形成(CF-)Li+。相對於(PC)-Li+,(CF-)Li+具有較高之電子親和力((CF-)-Li+ vs. (PC)-Li+ = 1.67 vs. 1.07 eV),顯示(CF-)Li+較(PC)-Li+容易進行還原反應而產生(CF2-)-Li+分子,而後再進行分解或聚合。由反應動力學與熱力學性質歸納出Li-CN分離為最容易發生之反應路徑,產生之反應中間體furanide anion,可經由攻擊2CF單體形成聚合中間體,進行陰離子加成聚合反應。
    本研究詳細探討2CF的還原、分解及聚合機制,證明2CF能夠有效形成穩定SEI膜,預期可以改善鋰離子電池性能。


    Lithium ion battery is thought as a promising power source for its high voltage, high cycle performance and high energy densities. The increase in improvement of safety is a key point for commercialization of lithium-ion batteries in the auto-mobile application. Using electrolyte additives is one of the most economic methods to enhance the performance of Lithium-ion batteries. In this contribution, we focus on reduction type additives which are reported to form electrochemically polymerizable intermediates. The reduction products assist in the formation of a stable solid electrolyte interface at the anode surface.
    To elucidate the mechanism of electrochemical polymerization of 2-Cyanofuran in Propylene Carbonate (PC) based electrolyte for Lithium-ion batteries, the electrochemical reduction of 2-Cyanofuran is investigated by using density functional theory (DFT) at B3LYP/6-311 ++ G** level. Based on theoretical calculation, one and two electrons reduction have been comprehensively analyzed. 2-Cyanofuran undergoes two electrons reduction more feasibly than one electron reduction and efficiently suppresses the decomposition of PC. Regarding the two electrons decomposition mechanisms, the 2-cyanofuran anion undergoes through elimination of the cyano group and ring opening channel. The salt effects is incorporated with the clusters (CF n-)-Li+ (n=1-2). From calculated results, the presence of Li+ considerably stabilizes the 2CF anion to form a more stable ion-pair intermediate, which proceeds through a subsequent reduction to give in (CF2-)-Li+ with a higher electron affinity than PC. Elimination of the lithium cyanide anion of (CF2-)-Li+ results in formation of α-carbene anion which leads to subsequent polymerization via nucleophilic attack on 2-Cyanofuran monomer. The ring opening leads to following decomposition reactions resulting polymerizable intermediates. This work gives detailed investigation about the reduction path of 2-Cyanofuran which contributes to the formation of a stable solid electrolyte interphase.

    Contents Abstract Chapter 1 Introduction 1.1 Basic Cell Chemistry 1.2 Material design 1.2.1 Cathode 1.2.2 Anode 1.2.3. Electrolytes 1.3 Solid Electrolyte Interface (SEI) 1.3.1 Chemistry and Formation Mechanism of SEI 1.3.2 Components of SEI 1.3.3 SEI forming improver 1.4 Motivation Chapter 2 Theoretical Methods 2.1 Density Functional Theory Methods 2.1.1 The Hohenberg-Kohn Theorem 2.1.2 Kohn-Sham SCF Scheme 2.2 Approximations for the Exchange-Correlation Functional 2.2.1 Local Density Approximation 2.2.2 Local Spin Density Approximation 2.2.3 Gradient Expansion Approximation 2.2.4 Hybrid Functionals 2.3 Basis sets 2.3.1 Mininal Basis Sets 2.3.2 Split Valence Basis Sets 2.3.3 Polarization Basis sets 2.3.4 Diffuse Functions 2.4 Continuum-Solvent Models 2.5 Population-Natural Bond Orbital (NBOs) 2.6 Computational Details Chapter 3 Results and Discussion 3.1 Comparison between 2CF and PC in Vacuum and Bulk Solvent 3.2 One electron and Two electrons Reductions of 2-Cyanofuran (2CF) in Bulk Solvent 3.3 Reductive Dissociation of 2CF in Bulk Solvent 3.3.1 One-electron Reductive decomposition of 2CF 3.3.2 Two-electron Reductive decomposition of 2CF 3.4 The effect of salt in reductive decomposition of 2CF 3.4.1 The effect of salt on one and two electrons reductions of 2-Cyanofuran (2CF) in Bulk Solvent 3.4.2 The effect of salt in one electron reductive decomposition of 2CF 3.4.3 The effect of salt in second electron reductive decomposition of 2CF Conclusion Explanation of Reaction Symbols 107 References 110

    References
    [1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [2] H. Takeshita, Portable Li-ion,worldwide, Proc. Conf. Power 2000, (2000).
    [3] H. Oman, Artificial hearts, batteries, and electric vehicles, IEEE Aerospace and Electronic Systems Magazine, 17 (2002) 34-39.
    [4] S.K. Martha, E. Markevich, V. Burgel, G. Salitra, E. Zinigrad, B. Markovsky, H. Sclar, Z. Pramovich, O. Heik, D. Aurbach, I. Exnar, H. Buqa, T. Drezen, G. Semrau, M. Schmidt, D. Kovacheva, N. Saliyski, A short review on surface chemical aspects of Li batteries: A key for a good performance, Journal of Power Sources, 189 (2009) 288-296.
    [5] S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries, Journal of Power Sources, 51 (1994) 79-104.
    [6] P. Kurzweil, K. Brandt, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Overview, in: G. Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 1-26.
    [7] J.M. Tarascon, Key challenges in future Li-battery research, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368 (2010) 3227-3241.
    [8] T. Ohzuku, R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries, Journal of Power Sources, 174 (2007) 449-456.
    [9] M.B. Armand, Materials for Advanced Batteries (Proc. NATO Symp. Materials Adv. Batteries), in, 1980.
    [10] M. Armand, J.M. Chabagno, M.J. Duclot, Fast Ion Transport in Solids Electrodes and Electrolytes, in, 1979.
    [11] Abstracts, Fuel and Energy Abstracts, 42 (2001) 240-294.
    [12] J.O. Besenhard, M. Winter, Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries, ChemPhysChem, 3 (2002) 155-159.
    [13] A.N. Dey, B.P. Sullivan, Journal of the Electrochemical Society, 117 (1970) 222-224.
    [14] D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, Study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries II. Graphite electrodes, Journal of the Electrochemical Society, 142 (1995) 2882-2890.
    [15] T. Ohzuku, Y. Iwakoshi, K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, Journal of the Electrochemical Society, 140 (1993) 2490-2497.
    [16] J.R. Dahn, Phase diagram of LixC6, Physical Review B, 44 (1991) 9170-9177.
    [17] D. Guerard, A. Herold, Intercalation of lithium into graphite and other carbons, Carbon, 13 (1975) 337-345.
    [18] D. Zhang, B.S. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, B.N. Popov, Studies on capacity fade of lithium-ion batteries, Journal of Power Sources, 91 (2000) 122-129.
    [19] T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U. von Sacken, J.R. Dahn, Lithium insertion in high capacity carbonaceous materials, Journal of the Electrochemical Society, 142 (1995) 2581-2590.
    [20] D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, Journal of the Electrochemical Society, 142 (1995) 2882.
    [21] R.J. Blint, Journal of the Electrochemical Society, 142 (1995) 696.
    [22] Y. Shao-Horn, L. Croguennec, C. Delmas, E.C. Nelson, M.A. O'Keefe, Atomic resolution of lithium ions in LiCoO2, Nat Mater, 2 (2003) 464-467.
    [23] T. Li, W. Qiu, R. Zhao, H. Xia, H. Zhao, J. Liu, Effect of sintering time on the electrochemical properties of spinel LiMn2O4 synthesized by solid-state reaction, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 15 (2008) 74-78.
    [24] K. Sekai, H. Azuma, A. Omaru, S. Fujita, H. Imoto, T. Endo, K. Yamaura, Y. Nishi, S. Mashiko, M. Yokogawa, Lithium-ion rechargeable cells with LiCoO 2 and carbon electrodes, Journal of Power Sources, 43 (1993) 241-244.
    [25] J.R. Dahn, U. von Sacken, M.W. Juzkow, H. Al-Janaby, Rechargeable LiNiO2/carbon cells, Journal of the Electrochemical Society, 138 (1991) 2207-2211.
    [26] I. Koetschau, M.N. Richard, J.R. Dahn, J.B. Soupart, J.C. Rousche, Orthorhombic LiMnO2 as a high capacity cathode for Li-ion cells, Journal of the Electrochemical Society, 142 (1995) 2906-2910.
    [27] J.B. Goodenough, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Positive Electrode: Layered Metal Oxides, in: G. Editor-in-Chief: Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 243-248.
    [28] D. Chua, A. Choblet, V. Manivanna, H.W. Lin, J. Wolfenstine, Advances in cathode technology for Li-ion batteries, in, 2001, pp. 275.
    [29] M. Hibino, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Positive Electrodes: Vanadium Oxides, in: G. Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 40-50.
    [30] Y. Makimura, T. Ohzuku, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Positive Electrode: Layered Mixed Metal Oxides, in: G. Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 249-257.
    [31] G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Lett., 11 (2011) 4462-4467.
    [32] J. Yang, J.l. Wang, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Negative Electrodes: Lithium Alloys, in: G. Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 225-236.
    [33] M.R. Giuliano, S.G. Advani, A.K. Prasad, Thermal analysis and management of lithium-titanate batteries, Journal of Power Sources, 196 (2011) 6517-6524.
    [34] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics, 180 (2009) 911-916.
    [35] B. Zhang, G. Chen, H. Li, Review of perovskite structure solid state lithium ion conductor, Journal of Rare Earths, 24 (2006) 132-138.
    [36] S. Stramare, V. Thangadurai, W. Weppner, Lithium Lanthanum Titanates: A Review, Chem. Mat., 15 (2003) 3974-3990.
    [37] A. Navrotsky, Energetics and Crystal Chemical Systematic among Ilmenite, Lithium Niobate, and Perovskite Structures, Chem. Mat., 10 (1998) 2787-2793.
    [38] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 3 (2008) 31-35.
    [39] C. de las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources, 208 (2012) 74-85.
    [40] M. Ue, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Electrolytes: Nonaqueous, in: G. Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 71-84.
    [41] A.N. Dey, B.P. Sullivan, Journal of the Electrochemical Society, 117 (1970) 222.
    [42] A.C. Chu, J.Y. Josefowicz, G.C. Farrington, Electrochemistry of highly ordered pyrolytic graphite surface film formation observed by atomic force microscopy, Journal of the Electrochemical Society, 144 (1997) 4161-4169.
    [43] Y. Ein-Eli, S.R. Thomas, V. Koch, D. Aurbach, B. Markovsky, A. Schechter, Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries, Journal of the Electrochemical Society, 143 (1996) L273-L277.
    [44] G.R. Zhuang, K. Wang, Y. Chen, P.N. Ross, Study of the reactions of Li with tetrahydrofuran and propylene carbonate by photoemission spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16 (1998) 3041-3045.
    [45] V.R. Koch, J.H. Young, 2-Methyltetrahydrofuran--Lithium Hexafluoroarsenate: A Superior Electrolyte for the Secondary Lithium Electrode, Science, 204 (1979) 499-501.
    [46] X. Sun, C.A. Angell, Doped sulfone electrolytes for high voltage Li-ion cell applications, Electrochemistry Communications, 11 (2009) 1418-1421.
    [47] X.-G. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries.: Part I. Oligoether-containing sulfones, Electrochemistry Communications, 7 (2005) 261-266.
    [48] X.-G. Sun, C. Austen Angell, New sulfone electrolytes: Part II. Cyclo alkyl group containing sulfones, Solid State Ionics, 175 (2004) 257-260.
    [49] Y. Abu-Lebdeh, I. Davidson, New electrolytes based on glutaronitrile for high energy/power Li-ion batteries, Journal of Power Sources, 189 (2009) 576-579.
    [50] K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation Sheath of Li+ in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry, The Journal of Physical Chemistry C, 111 (2007) 7411-7421.
    [51] S.A. Campbell, C. Bowes, R.S. McMillan, The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte, Journal of Electroanalytical Chemistry, 284 (1990) 195-204.
    [52] J.S. Foos, T.J. Stolki, New ether solvent for lithium cells, Journal of the Electrochemical Society, 135 (1988) 2769-2771.
    [53] M. Ue, A. Murakami, S. Nakamura, Anodic stability of several anions examined by ab initio molecular orbital and density functional theories, Journal of the Electrochemical Society, 149 (2002) A1572-A1577.
    [54] V.R. Koch, L.A. Dominey, C. Nanjundiah, M.J. Ondrechen, The intrinsic anodic stability of several anions comprising solvent-free ionic liquids, Journal of the Electrochemical Society, 143 (1996) 798-803.
    [55] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, 47 (2002) 1423-1439.
    [56] C. Nanjundiah, J.L. Goldman, L.A. Dominey, V.R. Koch, Electrochemical stability of LiMF6 (M = P, As, Sb) in tetrahydrofuran and sulfolane, Journal of the Electrochemical Society, 135 (1988) 2914-2917.
    [57] S.S. Zhang, K. Xu, T.R. Jow, Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte, J. Solid State Electrochem., 7 (2003) 147-151.
    [58] S.S. Zhang, K. Xu, T.R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery, Journal of the Electrochemical Society, 149 (2002) A586-A590.
    [59] K.-i. Takata, M. Morita, Y. Matsuda, K. Matsui, CYCLING CHARACTERISTICS OF SECONDARY Li ELECTRODE IN LiBF//4/MIXED ETHER ELECTROLYTES, Journal of the Electrochemical Society, 132 (1985) 126-128.
    [60] H.B. Han, S.S. Zhou, D.J. Zhang, S.W. Feng, L.F. Li, K. Liu, W.F. Feng, J. Nie, H. Li, X.J. Huang, M. Armand, Z.B. Zhou, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, Journal of Power Sources, 196 (2011) 3623-3632.
    [61] H. Zhou, F. Liu, J. Li, Preparation, thermal stability and electrochemical properties of LiODFB, in, 2012, pp. 1106-1111.
    [62] P. Liu, F.Q. Li, J. Li, H. Lu, Z.A. Zhang, Y.Q. Lai, LiODFB-TEABF 4 composite electrolyte for Li-ion battery and double-layer capacitor, Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 41 (2010) 2079-2084.
    [63] K. Matsumoto, B. Talukdar, T. Endo, Preparation of networked polymer electrolytes by copolymerization of a methacrylate with an imidazolium salt structure and an ethyleneglycol dimethacrylate in the presence of lithium bis(trifluoromethanesulfonyl)imide, Polymer Bulletin, 66 (2011) 779-784.
    [64] H. Han, J. Guo, D. Zhang, S. Feng, W. Feng, J. Nie, Z. Zhou, Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells, Electrochemistry Communications, 13 (2011) 265-268.
    [65] K. Xu, Chem. Rev., 104 (2004) 4303.
    [66] K. Xu, U. Lee, S.S. Zhang, T. Richard Jow, Graphite/electrolyte interface formed in LiBOB-based electrolytes II. Potential dependence of surface chemistry on graphitic anodes, Journal of the Electrochemical Society, 151 (2004) A2106-A2112.
    [67] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 162 (2006) 1379-1394.
    [68] D. Aurbach, O. Chusid, Secondary Batteries– Lithium Rechargeable Systems – Lithium-Ion : Electrolytes: Additives, in: G. Editor-in-Chief: Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 92-111.
    [69] C. Korepp, W. Kern, E.A. Lanzer, P.R. Raimann, J.O. Besenhard, M. Yang, K.C. Moller, D.T. Shieh, M. Winter, 4-bromobenzyl isocyanate versus benzyl isocyanate - New film-forming electrolyte additives and overcharge protection additives for lithium ion batteries, Journal of Power Sources, 174 (2007) 637-642.
    [70] R.J. Chen, Z.Y. He, F. Wu, Lithium Organic Borate Salt and Sulfite Functional Electrolytes, Progress in Chemistry, 23 382-389.
    [71] J.M. Tarascon, D. Guyomard, New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells, Solid State Ionics, 69 (1994) 293-305.
    [72] Z. Qianyu, Q. Chenchen, F. Yanbao, M. Xiaohua, Xylene as a new polymerizable additive for overcharge protection of lithium ion batteries, Chinese Journal of Chemistry, 27 (2009) 1459-1463.
    [73] H.F. Xiang, H.Y. Xu, Z.Z. Wang, C.H. Chen, Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, Journal of Power Sources, 173 (2007) 562-564.
    [74] X. Hao, P. Liu, Z.A. Zhang, Y.Q. Lai, X.Y. Wang, J. Li, Y.X. Liu, Tetraethylammonium Tetrafluoroborate as Additive to Improve the Performance of LiFePO4/Artificial Graphite Cells, Electrochem. Solid State Lett., 13 A118-A120.
    [75] R. Chen, Z. He, F. Wu, Lithium organic borate salt and sulfite functional electrolytes, Progress in Chemistry, 23 (2011) 382-389.
    [76] Z. Zhang, X. Chen, F. Li, Y. Lai, J. Li, P. Liu, X. Wang, LiPF 6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO 4/artificial graphite lithium-ion cells, Journal of Power Sources, 195 (2010) 7397-7402.
    [77] S.S. Zhang, Lithium oxalyldifluoroborate as a salt for the improved electrolytes of Li-ion batteries, in, 2007, pp. 59-68.
    [78] E. Peled, Journal of the Electrochemical Society, 126 (1979) 2047.
    [79] K. Xu, Electrolytes and interphasial chemistry in Li ion devices, Energies, 3 (2010) 135-154.
    [80] K. Xu, A. Von Cresce, U. Lee, Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir, 26 (2010) 11538-11543.
    [81] G.C. Chung, H.J. Kim, S.I. Yu, S.H. Jun, J.W. Choi, M.H. Kim, Origin of graphite exfoliation. An investigation of the important role of solvent cointercalation, Journal of the Electrochemical Society, 147 (2000) 4391-4398.
    [82] P. Copper, M. Hunicken, J.L. Benedetto, The silurian brachiopod australina from the Malvinokaffric Faunal Province, Journal of Paleontology, 62 (1998) 531.
    [83] P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
    [84] V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky, XPS analysis of the SEI formed on carbonaceous materials, Solid State Ionics, 170 (2004) 83-91.
    [85] G. Zhuang, K. Wang, P.N. Ross Jr, XPS characterization of the reactions of Li with tetrahydrofuran and propylene carbonate, Surface Science, 387 (1997) 199-212.
    [86] K. Kanamura, H. Tamura, S. Shiraishi, Z.-i. Takehara, XPS analysis of lithium surfaces following immersion in various solvents containing LiBF 4, Journal of the Electrochemical Society, 142 (1995) 340-347.
    [87] D. Guyomard, New Trends in Electrochemical Technology: Energy Storage Systems for Electronics, in, 2000.
    [88] D. Aurbach, Review of selected electrode solution interactions which determine the performance of Li and Li-ion batteries, J. Power Sources, 89 (2000) 206-218.
    [89] M.R. Wagner, J.H. Albering, K.C. Moeller, J.O. Besenhard, M. Winter, XRD evidence for the electrochemical formation of Li+(PC) yCn- in PC-based electrolytes, Electrochemistry Communications, 7 (2005) 947-952.
    [90] R. Baddour-Hadjean, J.P. Pereira-Ramos, M. Latroche, A. Percheron-Guegan, In situ X-ray diffraction study on MmNi3.85Mn0.27Al0.37Co0.38 as negative electrode in alkaline secondary batteries, Electrochimica Acta, 48 (2003) 2813-2821.
    [91] M. Inaba, Y. Kawatate, A. Funabiki, S.K. Jeong, T. Abe, Z. Ogumi, STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution, Electrochimica Acta, 45 (1999) 99-105.
    [92] E. Goren, O. Chusid, D. Aurbach, Application of in situ FTIR spectroscopy to the study of surface films formed on lithium and noble metals at low potentials in Li battery electrolytes, Journal of the Electrochemical Society, 138 (1991) L6-L9.
    [93] P. Verma, P. Maire, P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
    [94] P.E. Stallworth, NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes, J. Power Sources, 81 (1999) 739-747.
    [95] K. Naoi, M. Mori, Y. Naruoka, W.M. Lamanna, R. Atanasoski, The Surface Film Formed on a Lithium Metal Electrode in a New Imide Electrolyte, Lithium Bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2], Journal of the Electrochemical Society, 146 (1999) 462-469.
    [96] Y. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: How does vinylene carbonate play its role as an electrolyte additive?, Journal of the American Chemical Society, 124 (2002) 4408-4421.
    [97] Y. Wang, S. Nakamura, M. Ue, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: Reduction mechanisms of ethylene carbonate, Journal of the American Chemical Society, 123 (2001) 11708-11718.
    [98] C. Wang, H. Nakamura, H. Komatsu, M. Yoshio, H. Yoshitake, Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system, Journal of Power Sources, 74 (1998) 142-145.
    [99] S.S. Zhang, T.R. Jow, K. Amine, G.L. Henriksen, LiPF6-EC-EMC electrolyte for Li-ion battery, Journal of Power Sources, 107 (2002) 18-23.
    [100] D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, H. Yamin, Correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable `rocking-chair' type batteries, Journal of the Electrochemical Society, 141 (1994) 603-611.
    [101] D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions, Journal of The Electrochemical Society, 134 (1987) 1611-1620.
    [102] E. Peled, D. Golodnitsky, A. Ulus, V. Yufit, Effect of carbon substrate on SEI composition and morphology, Electrochimica Acta, 50 (2004) 391-395.
    [103] E. Peled, D. Golodnitsky, C. Menachem, D. Bar-Tow, An advanced tool for the selection of electrolyte components for rechargeable lithium batteries, Journal of the Electrochemical Society, 145 (1998) 3482-3486.
    [104] L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, D. Gonbeau, Effect of Vinylene Carbonate Additive in Li-Ion Batteries: Comparison of LiCoO[sub 2]/C, LiFePO[sub 4]/C, and LiCoO[sub 2]/Li[sub 4]Ti[sub 5]O[sub 12] Systems, Journal of The Electrochemical Society, 156 (2009) A468-A477.
    [105] W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries, Energy and Environmental Science, 2 (2009) 1102-1108.
    [106] C. Korepp, H.J. Santner, T. Fujii, M. Ue, J.O. Besenhard, K.C. Moller, M. Winter, 2-Cyanofuran-A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries, Journal of Power Sources, 158 (2006) 578-582.
    [107] M.H. Park, Y.S. Lee, H. Lee, Y.K. Han, Low Li+ binding affinity: An important characteristic for additives to form solid electrolyte interphases in Li-ion batteries, Journal of Power Sources, 196 (2011) 5109-5114.
    [108] M.D. Halls, K. Tasaki, High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives, Journal of Power Sources, 195 (2010) 1472-1478.
    [109] J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature Materials, 5 (2006) 909-913.
    [110] P. Biensan, J.M. Bodet, F. Perton, M. Broussely, C. Jehoulet, S. Barusseau, S. Herreyre, B. Simon, 10th International Meeting on Lithium Batteries, Como, Italy, May 28-June 2, (2000).
    [111] B. Simon, J.P. Boeuve, (1997).
    [112] H. Ota, T. Akai, H. Namita, S. Yamaguchi, M. Nomura, XAFS and TOF?IMS analysis of SEI layers on electrodes, Journal of Power Sources, 119??21 (2003) 567-571.
    [113] L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal, D. Gonbeau, The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of the Electrochemical Society, 156 (2009) A103-A113.
    [114] F.-M. Wang, H.-M. Cheng, H.-C. Wu, S.-Y. Chu, C.-S. Cheng, C.-R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta, 54 (2009) 3344-3351.
    [115] G.H. Wrodnigg, J.O. Besenhard, M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes, Journal of the Electrochemical Society, 146 (1999) 470-472.
    [116] G.H. Wrodnigg, T.M. Wrodnigg, J.O. Besenhard, M. Winter, Propylene sulfite as film-forming electrolyte additive in lithium ion batteries, Electrochemistry Communications, 1 (1999) 148-150.
    [117] J.O. Besenhard, M. Winter, J. Yang, W. Biberacher, J. Power Sources, 54 (1993) 228.
    [118] Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, S. Luski, Electrochem. Acta, 39 (1994) 2559.
    [119] X. Zuo, M. Xu, W. Li, D. Su, J. Liu, Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries, Electrochemical and Solid-State Letters, 9 (2006) A196-A199.
    [120] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources, 162 (2006) 1379-1394.
    [121] J. Ufheil, M.C. Baertsch, A. Wursig, P. Novak, Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries, Electrochimica Acta, 50 (2005) 1733-1738.
    [122] J. Xiang, R.J. Chen, F. Wu, L. Li, S. Chen, Electrochemical Behavior of Isocyanate as Novel Film-forming Additive in Electrolytes, Chem. J. Chin. Univ.-Chin., 32 1231-1233.
    [123] S.S. Zhang, Aromatic isocyanate as a new type of electrolyte additive for the improved performance of Li-ion batteries, Journal of Power Sources, 163 (2006) 567-572.
    [124] W. Kohn, A.D. Becke, R.G. Parr, Density Functional Theory of Electronic Structure, The Journal of Physical Chemistry, 100 (1996) 12974-12980.
    [125] E. Fermi, Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo, Phys. Rev. Lett., 28 (1927) 1049-1070.
    [126] L.H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, 23 (1927) 542-548.
    [127] E. Schrodinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, 28 (1926) 1049-1070.
    [128] C.F.v. Weizsacker, Zur Theorie der Kernmassen, Zeitschrift fur Physik A Hadrons and Nuclei, 96 (1935) 431-458.
    [129] E.H. Lieb, Thomas-fermi and related theories of atoms and molecules, Reviews of Modern Physics, 53 (1981) 603-641.
    [130] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review, 136 (1964) B864-B871.
    [131] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, 140 (1965) A1133-A1138.
    [132] R.G. Parr, W. Yang, DENSITY-FUNCTIONAL THEORY
    OF THE ELECTRONIC
    STRUCTURE OF MOLECULES', Annu. Rev. Phys. Chem., 46 (1995) 701-728.
    [133] P.-O. Lowdin, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, Physical Review, 97 (1955) 1474-1489.
    [134] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, 58 (1980) 1200-1211.
    [135] D.C. Langreth, J.P. Perdew, Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works, Physical Review B, 21 (1980) 5469-5493.
    [136] J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Physical Review B, 33 (1986) 8822-8824.
    [137] D.C. Langreth, M.J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties, Physical Review B, 28 (1983) 1809-1834.
    [138] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37 (1988) 785-789.
    [139] P. Dirac, P. Proc. Cambridge, Phil. Soc. , 26 (1930) 376
    [140] A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories, The Journal of Chemical Physics, 98 (1993) 1372-1377.
    [141] R.M. Dickson, A.D. Becke, Local Density-Functional Polarizabilities and Hyperpolarizabilities at the Basis-Set Limit, The Journal of Physical Chemistry, 100 (1996) 16105-16108.
    [142] J.S. Binkley, J.A. Pople, W.J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements, Journal of the American Chemical Society, 102 (1980) 939-947.
    [143] J.B. Collins, P.v.R. Schleyer, J.S. Binkley, J.A. Pople, Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets J. Chem. Phys., 64 (1976) 5142-5151.
    [144] T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Communications on Pure and Applied Mathematics, 10 (1957) 151-177.
    [145] W.J. Hehre, R.F. Stewart, J.A. Pople, Self-Consistent Molecular Orbital Methods. 1. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys., 51 (1969) 2657- 2664.
    [146] A.D. McLean, G.S. Chandler, Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18 J. Chem. Phys., 72 (1980) 5639-5648.
    [147] J.S. Binkley, J.A. Pople, W.J. Hehre, Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements, J. Am. Chem. Soc., 102 (1980) 939-947.
    [148] M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, Small Split-Valence Basis Sets for Second-Row Elements J. Am. Chem. Soc., 104 (1982) 2797-2803.
    [149] K.D. Dobbs, W.J. Hehre, Molecular-orbital theory of the properties of inorganic and organometallic compounds. 4. Extended basis-sets for 3rd row and 4th row, main-group elements J. Comp. Chem., 7 (1986) 359-378.
    [150] P.C. Hariharan, J.A. Pople, Influence of polarization functions on molecular-orbital hydrogenation energies, Theor. Chem. Acc., 28 (1973).
    [151] A.J. Sadlej, Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 79 (1991) 123-140.
    [152] M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, D.J. DeFrees, J.A. Pople, a.M.S. Gordon, Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements, J. Chem. Phys., 77 (1982) 3654-3665.
    [153] P.C. Hariharan, J.A. Pople, Influence of polarization functions on molecular-orbital hydrogenation energies, Theor. Chem. Acc., 28 (1973
    ) 213-222.
    [154] A.J. Sadlej, Molecular electric polarizabilities. Electronic-field-variant (EFV) gaussian basis set for polarizability calculations, Chemical Physics Letters, 47 (1977) 50-54.
    [155] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.v.R. Schleyer, The 3-21+G basis set for 1st-row elements, Li-F J. Comp. Chem., 4 (1983) 294-301.
    [156] M.J. Frisch, J.A. Pople, J.S. Binkley, Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets
    J. Chem. Phys., 80 (1984) 3265-3269.
    [157] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev., 105 (2005) 2999-3093.
    [158] C.-G. Zhan, D.M. Chipman, Cavity size in reaction field theory, The Journal of Chemical Physics, 109 (1998) 10543-10558.
    [159] J. Liu, C.P. Kelly, A.C. Goren, A.V. Marenich, C.J. Cramer, D.G. Truhlar, C.G. Zhan, Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell, J Chem Theory Comput, 6 (2010) 1009-1117.
    [160] F. Weinhold, J.E. Carpenter, The Structure of Small Molecules and Ions
    Plenum, 1988.
    [161] J.E. Carpenter, F. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure, J. Mol. Struct. (Theochem), 46 (1988) 41-62.
    [162] J. Baker, A. Scheiner, J. Andzelm, Spin contamination in density functional theory, Chemical Physics Letters, 216 (1993) 380-388.
    [163] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113 (2009) 6378-6396.
    [164] M. Arivazhagan, R. Kavitha, Molecular structure, vibrational spectroscopic, NBO, HOMO–LUMO and Mulliken analysis of 4-methyl-3-nitro benzyl chloride, Journal of Molecular Structure, 1011 (2012) 111-120.
    [165] N. Vakula, G. Kuramshina, S. Makhmutova, Y. Pentin, DFT theoretical studies of anions of aniline and its several derivatives, Structural Chemistry, 22 (2011) 345-356.
    [166] B.W. D’Andrade, S. Datta, S.R. Forrest, P. Djurovich, E. Polikarpov, M.E. Thompson, Relationship between the ionization and oxidation potentials of molecular organic semiconductors, Organic Electronics, 6 (2005) 11-20.
    [167] G.G. Chung, H.J. Kim, S.I. Yu, S.H. Jan, J.W. Choi, M.H. Kim, Journal of the Electrochemical Society, 147 (2000) 4291.
    [168] M.H. Park, Y.S. Lee, H. Lee, Y.-K. Han, Low Li+ binding affinity: An important characteristic for additives to form solid electrolyte interphases in Li-ion batteries, Journal of Power Sources, 196 (2011) 5109-5114.
    [169] M.Q. Xu, W.S. Li, X.X. Zuo, J.S. Liu, X. Xu, Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive, Journal of Power Sources, 174 (2007) 705-710.
    [170] R. Gavar, Y. Stradyn, M. Fleisher, V. Kadysh, V. Slavinskaya, Electrochemical reduction of cyanofurans and the possibility of the formation of radical-anions in this reaction, Theoretical and Experimental Chemistry, 16 (1981) 267-270.
    [171] J.A. Elvidge, Ring currents in furan, thiophen, and pyrrole and the aromaticities of these compounds, Chemical Communications (London), (1965) 160-161.
    [172] M. D'Auria, Ab initio study on the photochemical isomerization of furan derivatives, Journal of Organic Chemistry, 65 (2000) 2494-2498.
    [173] J.C. Decius, An effective atomic charge model for infrared intensities, J. Mol. Spectrosc., 57 (1975) 348-362.
    [174] R. Liu, X. Zhou, L. Zhai, Theoretical investigation of unimolecular decomposition channels of furan4, Journal of Computational Chemistry, 19 (1998) 240-249.
    [175] S.W. Vogelhuber Km Fau - Wren, L. Wren Sw Fau - Sheps, W.C. Sheps L Fau - Lineberger, W.C. Lineberger, The C-H bond dissociation energy of furan: photoelectron spectroscopy of the furanide anion.
    [176] T. Fukushima, Y. Matsuda, H. Hashimoto, R. Arakawa, Studies on Solvation of Lithium Ions in Organic Electrolyte Solutions by Electrospray Ionization-Mass Spectroscopy, Electrochemical and Solid-State Letters, 4 (2001) A127.
    [177] Y. Wang, P.B. Balbuena, Theoretical Insights into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate:  Density Functional Theory Studies, The Journal of Physical Chemistry B, 106 (2002) 4486-4495.

    QR CODE