簡易檢索 / 詳目顯示

研究生: 黃順源
OSEL - NOVANDI WITOHENDRO
論文名稱: 熱載子效應在不同閘極厚度間電容交叉耦合注入鎖定四相位除頻器研究
Hot Carrier Effect Research on Thick-Thin Gate ILFD and Study on Capacitive Cross-Coupled QILFD
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
賴文政
Wen-Cheng Lai
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 77
中文關鍵詞: 注入鎖定式除頻器熱載子效應四相位注入鎖定除頻器
外文關鍵詞: Injection Locked Frequency Divider, Hot Carrier, QILFD
相關次數: 點閱:352下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出 2 種注入鎖定除 2 架構熱載子的實驗條件下,在交錯耦合電晶體間兩閘
    極的厚薄度加以比較,可以發現到熱載子壓力的退化程度,在交錯耦合電晶體在不同
    電壓注入,功耗愈大時鎖頻範圍愈小,反之,功耗愈小時鎖頻範圍愈大,得到此最大
    的鎖頻範圍是閘極偏壓達到最佳值,從這實驗中成功地看出鎖頻範圍的變化。
    注入鎖定除 2 除頻器用電容交錯耦合方式進行研究,用環形耦合方式得到有四相
    位輸出,此最高的優化指數為 3.78 在 VDD=0.85V,VR=0.8V,鎖頻範圍在 9.1 到
    12.8GHz,最低功耗 7.39mW 在 VDD=0.7V,VR=0.8V,優化指數 3.44,鎖頻範圍 9.6 到
    12.4GHz,較高的鎖頻範圍在 VDD=1V,VR=1.1V,優化指數 1.81 和鎖頻範圍 8.6 到
    13.7GHz,此功耗可透過改變開關晶體管的閘極偏壓來控制,此四相位注入鎖定除頻
    器運用在 VDD < VR在條件下,較高的優化指數仍然需要在 VDD > VR的條件下。


    Two divide-by-2 cross-coupled Injection Locked Frequency Dividers (ILFD) have
    been put under experimental stress conditions. Comparison of stress effects is made between
    thick-gate cross-coupled transistors and thin-gate cross-coupled transistors. Degradations due
    to hot-carrier stress have been found. The cross-coupled MOSFETs have different effect on
    power consumption than the injection MOSFET, increasing it while the latter is decreasing it.
    Increase in output power, decrease in locking range and optimal gate bias shifting to a higher
    level are observed as contribution from injection MOSFET’s degradation. The experiment
    successfully isolate the effect of stress-degraded injection MOSFET.
    An LC-tank divide-by-2 Quadrature ILFD (QILFD) using the capacitive cross-coupled
    oscillator has been studied. The quadrature operation is obtained by ring transformer coupling.
    The highest FOM achieved is 3.78 at VDD = 0.85V, VR = 0.8V, with locking range from 9.1 to
    12.8 GHz. The lowest power consumption is 7.39mW at VDD = 0.7V, VR = 0.8V, with FOM of
    3.44 and locking range from 9.6 to 12.4 GHz. The widest locking range is achieved at VDD =
    1V, VR = 1.1V, with FOM of 1.81 and locking range from 8.6 to 13.7GHz. The power
    consumption can be controlled by changing the gate bias (VR) of switching transistors. The
    QILFD can operate at VDD < VR conditions. Higher Figure of Merit (FoM) still require VDD >
    VR condition.

    中文摘要 ...................................................................................................................................I ABSTRACT.............................................................................................................................. II ACKNOWLEDGEMENTS.....................................................................................................III TABLE OF CONTENTS.........................................................................................................IV LIST OF FIGURES .................................................................................................................VI LIST OF TABLES....................................................................................................................X INTRODUCTION .....................................................................................................................1 1.1 BACKGROUND..............................................................................................................1 1.2 THESIS ORGANIZATION................................................................................................3 FUNDAMENTAL THEORIES.................................................................................................4 2.1 PASSIVE ELEMENTS .....................................................................................................4 2.1.1 RESISTORS ................................................................................................................4 2.1.2 CAPACITORS .............................................................................................................5 2.1.3 INDUCTORS...............................................................................................................9 2.2 VOLTAGE CONTROLLED OSCILLATOR (VCO)............................................................11 2.2.1 GENERAL VCO.......................................................................................................14 2.2.2 LC-TANK OSCILLATORS.........................................................................................17 2.2.3 VCO CHARACTERISTIC PARAMETERS ....................................................................19 2.2.4 QUADRATURE SIGNAL GENERATION ......................................................................24 2.3 INJECTION LOCKED FREQUENCY DIVIDER (ILFD).....................................................25 2.3.1 BASIC PRINCIPLE ....................................................................................................26 2.3.2 LOCKING RANGE ....................................................................................................27 2.3.3 QUADRATURE INJECTION LOCKED FREQUENCY DIVIDER (QILFD) .......................29 2.4 HOT CARRIER EFFECT................................................................................................30 HOT CARRIER EFFECT ON THICK GATE ILFD-BY-2....................................................32 3.1 INTRODUCTION ..........................................................................................................32 3.2 CIRCUIT DESIGN ........................................................................................................33 3.3 MEASUREMENT RESULT ............................................................................................34V HOT CARRIER EFFECT ON THIN GATE ILFD-BY-2 ......................................................43 4.1 CIRCUIT DESIGN ........................................................................................................43 4.2 MEASUREMENT RESULT ............................................................................................43 CAPACITIVE CROSS-COUPLED QILFD ...........................................................................52 5.1 INTRODUCTION ..........................................................................................................52 5.2 CIRCUIT DESIGN....................................................................................52 5.3 MEASUREMENT RESULT......................................................................54 CONCLUSIONS......................................63 REFERENCES ........................................64

    [1]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
    [2]S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [3]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [4]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [5]B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [6]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [7]J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 736-744, May 1997.
    [8]C. P. Yue, and S. S. Wong, “Design strategy of on-chip inductors for highly integrated RF systems,” Design Automation Conference, pp. 982-987, 21-25 June 1999.
    [9]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [10]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [11]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
    [12]M. W. Geen, G. J. Green, R.G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 303-306, 22-25 Oct. 1989.
    [13]P. Andreani, and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
    [14]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [15]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [16]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [17]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [18]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [19]M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [20]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [21]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [22]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [23]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [24]H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [25]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [26]S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
    [27]S.-L. Jang, L.-T. Chou, J.-F. Huang, and C.-W. Chang, ” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. Electron., Vol.E94-C,No.8,pp.1336-1339, Aug. 2011.
    [28]S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013
    [29]S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, and C.-C. Liu, ” Dual-band transformer-coupled quadrature injection-locked frequency dividers,” Microw. Opt. Technol. Lett., pp.1561-1564, July, 2011.
    [30]S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” CMOS injection-locked frequency divider with two series-LC resonators,” Microw. Opt. Technol. Lett., pp.290-293, Feb., 2011.
    [31]Y.-C. Kuo, “A novel tripleband divider by two injection-locked frequency divider And low phase noise dualband PMOS VCO”, MS thesis 2012.
    [32]S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Trans. Electron Devices. Vol. ED-31, No. 9. p. 1116-1125, 1986
    [33]S.-S. Liu, S.-L. Jang, and C.-G. Chyau, " Compact LDD nMOSFET degradation model, " IEEE Trans. Electron Devices, Vol. 45, No. 7, pp.1538-1547, 1998.
    [34]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
    [35]S.-L. Jang, J.-F. Huang, C.-C. Fu and M.-H. Juang, ” Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process (2014) 80:133–139.
    [36]S.-L. Jang, and J.-H. Hsieh, ”RF performance degradation in CMOS divide-by-3 injection-locked frequency divider due to hot carrier Effects”, J. Low Power Electronics. Vol.9, No. 4, pp.484-489, Dec. 2013
    [37]S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider," Fluct. Noise Lett. vol. 13, no. 2, 1450009-1 April, 2014.
    [38]H.-H. Lai, I.-S. Shen, and C. F. Jou, “A Colpitts Current-Reused QVCO Based on Capacitor Coupling,” IEEE Asia-Pacific Microwave Conf., pp. 1638–1641, Dec. 2011.
    [39]P. Liu, S.P. Sah, X. Yu, J. Jung, P. Upadhyaya, T.N. Nguyen, and D. Heo, “Design techniques for load-independent direct bulk-coupled low power QVCO,” IEEETrans. Microw. TheoryTech., vol.61, no.10, pp. 3658–3665, Oct. 2013.
    [40]S.-L. Jang, T.-S. Lee, C.-W. Hsue, and C.-W. Chang, “A low voltage and low power bottom-series coupled quadrature VCO,” IEEEMicrow.WirelessCompon.Lett., vol.19, pp.722–724, Nov.2009
    [41]H.-J. Chang, C. Lim, and T.-Y. Yun, “CMOS QVCO with current reuse, bottom-series coupling, forward body biasing techniques,” IEEEMicrow.WirelessCompon.Lett., vol.24,no.9, pp.608–610, Sep.2014.
    [42]S.-H. Lee, S.-J. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
    [43]S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, “Quadrature injection-locked frequency dividers using dual resonance resonator,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 1, pp. 37–39, Jan. 2011.
    [44]Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, and M.-C. F. Chang,” A 70–78-GHz Integrated CMOS frequency synthesizer for W-band satellite communications” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206–3217, Dec. 2011.
    [45]S.-L. Jang, Y.-H. Chung, S.-H. Lee, L.-R. Chi, and J.-F. Lee,” An integrated 5/2.5GHz direct-injection locked quadrature LC VCO,” IEEE Microw. Wireless Compon. Lett., pp.142-144, Feb. 2007.
    [46]S.-L. Jang, Y.-H. Chuang, S.-H. Lee and Y.-H. Chiang,” A current reused CMOS quadrature injection locked frequency divider,” Microw. Opt. Technol. Lett., pp.1804-1806, Aug. 2007.
    [47]S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” A wide locking range quadrature injection locked frequency divider with tunable active inductor,” IEICE Trans. Electronics., Vol.E91-C, No.3, pp.373-377, Mar. 2008.
    [48]S.-L. Jang, C.-C. Liu, R.-K. Yang, C.-C. Shih, and C.-W. Chang, “A 0.35 um CMOS divide-by-2 quadrature injection-locked frequency divider based on voltage-current feedback topology”, Microelectronics Reliability, 50, pp.594–598, 2010.
    [49]H. M. Cheema, R. Mahmoudi, "A 30 to 44 GHz divide-by-2, quadrature, direct injection locked frequency divider for sliding-IF 60 GHz transceivers", Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010, pp. 57-59.
    [50]S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection-locked frequency dividers using dual-resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
    [51]S.-L. Jang, L.-T. Chou, J.-F. Huang, C.-W. Chang,” A dual-band dual-resonance quadrature injection-locked frequency divider,” IEICE Trans. Electron., Vol.E94-C, No.8, pp. 1336-1339, Aug. 2011.
    [52]S.-L. Jang, Y.-H. Chuang, S.-H. Lee, and J.-J. Chao,” Circuit techniques for CMOS divide-by-4 frequency divider,” IEEE Microw. Wireless Compon. Lett., pp.217-219, March 2007.
    [53]S.-L. Jang, C.-W. Lin, C.-C. Liu, and M.-H. Juang, " tail-injected divide-by-4 quadrature injection locked frequency divider, " Int. J. Electronics. Vol. 96, No. 12, pp.1225-1235, 2009.
    [54]T.-C. Yan, H.-Y. Shih, T.-Y. Yang, and C.-N. Kuo, " A Q-band direct divide-by-4 injection-locked frequency divider with quadrature outputs', IEEE European Microwave Conf., 2010, pp.28-30.

    QR CODE