簡易檢索 / 詳目顯示

研究生: 盧正倫
Cheng-Lun Lu
論文名稱: 藉由微環型共振耦合Mach-Zehnder干涉儀之不敏感相位共振生醫感測器
Phase Insensitive Resonance Biosensing through Microring-Resonator-Coupled Mach-Zehnder Interferometer
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-hung Lin
口試委員: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-hung Lin
葉秉慧
Ping-Hui Yeh
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 43
中文關鍵詞: 微環型共振器馬赫-詹德干涉儀Fano共振窗口富立葉轉換
外文關鍵詞: micro ring resonator, Mach-Zehnder Interferometer, Fano resonant, Windowed Fourier transform
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微環型共振器(Micro Ring Resonator, MRR)之運作原理為,根據其設計之環型波導周長,波導本身之等效折射率等條件,我們可觀察到將會有特定波長之光會被偶合至環型共振器內部,造成在微環型共振器穿透端之光譜上,會觀測到光譜以一特定週期出現衰減,同時在抓取端之光譜可觀察到光以同樣週期出現。傳統型微環型共振器透過此特性,主要為觀察共振波長的改變,後續再以此為基礎衍伸出各種不同的觀測方式如線寬變化或共振波長之週期變化等不同感測系統。並且以其體積小、靈敏度高、量測速度快等特性作為量測上的優點而被廣泛討論。
    本論文旨在探討利用Ring down之現象做為感測以及傳統型微環型感測器與雙環型共振器耦合MZI (Mach-Zehnder Interferometer)兩種不同架構,我們藉由觀測不同波導外部折射率所造成光譜的變化,再進一步由傅立葉轉換得知時間域之訊號,利用觀察相位變化得以感測等校折射率之改變,由此可對待測物進行感測。在一般使用OSA觀察共振波長變化上若假設本實驗室之儀器的解析度10pm為感測極限,可得出LOD(limit of detection)大致約為5×〖10〗^(-4)RIU,而若使用低同調光纖光學干涉(OFLCI)以本實驗室之步進馬達20nm為感測極限則LOD約為7.01×〖10〗^(-8)RIU,計算上進一步發現在雙環型共振器耦合MZI架構上,除了因為可以選擇對複數Ring down做相位計算,感測靈敏度比起傳統型微環型感測器更好之外,對於MZI上的相位變化也是不敏感的。
    我們在計算上藉由加入Fano共振效果測試對於感測靈敏度之影響,Fano共振是一可以藉由相位差產生的現象,我們可以藉此現象觀察相位變化的程度,當我們在MZI上對其中一微環型共振器產生Fano共振時,以商業軟體計算發現我們的架構靈敏度對於相位變化不敏感,無論Fano共振程度皆不會影響到我們觀測系統的相位變化,也因此不影響系統的系統LOD。
    此外在我們將藉由實驗對一傳統微環型共振器晶片觀察在不同波導折射率之相位變化,以此來佐證我們的量測方式可被實際應用於實作,並藉由單微環型共振器實驗之感測靈敏度和我們理論設計之LOD做出比較。


    The waveguide-based microring resonator (MRR) is operated through the ring perimeter, refractive index, optical coupler, and propagation loss. The light injected into the MRR results in a particular period in the through port. At the same time, the exact wavelengths will appear with the same period at the drop port. A conventional MRR is mainly utilized to observe the change of resonant wavelengths through this feature. Then it is also used as a basis for several detection methods such as line width variation or periodical change of resonant wavelengths and other different sensing systems. It is widely discussed for its small size, high sensitivity, and fast measurement speed.
    This thesis aims to explore the ring down phenomenon for sensing and two different structures: the conventional micro-ring sensor and the dual-ring resonator coupled Mach-Zehnder Interferometer (MZI). The output spectrum is moving with the refractive index variation. Further, the signal in the time domain will be followed by Fourier transform (FT) and forms the ring-down phenomena. If we use OSA to observe the resonance wavelength change, assuming that the resolution of this laboratory's instrument is 10 pm as the sensing limit, the LOD (limit of detection)can be approximately 5×〖10〗^(-4)RIU , and if we use the optical fiber low coherence interferometry (OFLCI) with the laboratory's step motor of 20 nm as the sensing limit, the LOD is approximately7.01×〖10〗^(-8)RIU. The theoretical calculation further reveals that the dual-ring resonator-coupled MZI structure has better sensing sensitivity than conventional micro-ring sensors because it can choose to do phase calculation for multiple Ring down. Also, it is insensitive to phase changes on the MZI.
    Fano and Non-Fano resonances could be generated by the phase difference of the dual-ring resonator micro-ring coupled MZI. These two resonances theoretically demonstrate the same high sensitivity, which means that the dual-ring resonator coupled MZI performs phase insensitive resonance biosensing.
    In addition, the phase of a conventional micro-ring resonator chip is experimentally manipulated by the applied voltage to change the refractive index of a waveguide for the sensitivity study. The new proposed windowed FT can adequately be utilized to illustrate the sensing sensitivity.

    目錄 摘要 1 第1章 緒論 8 1.1研究背景 8 1.2研究動機 8 1.3論文架構 9 第2章 基本理論 10 2.1 微環型共振器原理 10 2.2 微環形共振器重要參數 13 2.3 Ringdown現象 14 2.4 Fano共振效應 16 2.5窗口傅立葉轉換原理與技術 17 2.6光纖低同調光學干涉 19 2.7 光柵偶合 20 第3章 系統架構與模擬 24 3.1 Ring Down之相位量測 24 3.2雙環型共振器耦合Mach-Zehnder干涉儀基本原理 24 3.3 Ring down現象之模擬 26 3.4雙環型共振器耦合MZI系統模擬 29 3.5 Fano現象對靈敏度影響 32 第4章 實驗方式及量測 34 4.1光柵耦合量測 34 4.2量測架構 35 4.3實驗結果 37 第5章 結論與未來展望 41 5.1結論 41 5.2未來展望 41 參考文獻 42

    [1] A. Densmore, D. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor", IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
    [2] G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating", Journal of the Optical Society of America B, vol. 24, no. 10, p. 2696, 2007.
    [3] S. Cho and N. Jokerst, "A Polymer Microdisk Photonic Sensor Integrated Onto Silicon", IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2096-2098, 2006.
    [4] R. Boyd and J. Heebner, "Sensitive disk resonator photonic biosensor", Applied Optics, vol. 40, no. 31, p. 5742, 2001.
    [5] C. Chao and L. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance", Applied Physics Letters, vol. 83, no. 8, pp. 1527-1529, 2003.
    [6] A. Armani and K. Vahala, "Heavy water detection using ultra-high-Q microcavities", Optics Letters, vol. 31, no. 12, p. 1896, 2006.
    [7] A. Armani, R. Kulkarni, S. Fraser, R. Flagan and K. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities", Science, vol. 317, no. 5839, pp. 783-787, 2007.
    [8] H. Yi, D. Citrin and Z. Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance", Optics Express, vol. 18, no. 3, p. 2967, 2010.
    [9] D. Dai and S. He, "Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators", Optics Communications, vol. 279, no. 1, pp. 89-93, 2007.
    [10] Z. Wang, M. Jiang, H. Xu and R. Du, "New Optical Fiber Micro-Bend Pressure Sensors Based on Fiber-Loop Ringdown", Procedia Engineering, vol. 29, pp. 4234-4238, 2012.
    [11] Y. Lu, J. Yao, X. Li, and P. Wang, "Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach–Zehnder interferometer," Opt. Lett. 30, 3069-3071 ,2005.
    [12] M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", Journal of the Optical Society of America vol. 72, pp. 56-160, 1982.
    [13] C. Lawson and R. Michael, "Fiber optic low-coherence interferometry for non-invasive silicon wafer characterization", Journal of Crystal Growth, vol. 137, no. 1-2, pp. 37-40, 1994.
    [14] M. Dakss, L. Kuhn, P. Heidrich and B. Scott, "ERRATA: GRATING COUPLER FOR EFFICIENT EXCITATION OF OPTICAL GUIDED WAVES IN THIN FILMS", Applied Physics Letters, vol. 17, no. 6, p. 268, 1970.
    [15] R. Waldhäusl, B. Schnabel, P. Dannberg, E. Kley, A. Bräuer and W. Karthe, "Efficient Coupling into Polymer Waveguides by Gratings", Applied Optics, vol. 36, no. 36, p. 9383, 1997.
    [16] F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout and R. Baets, "Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits", IEEE Photonics Technology Letters, vol. 19, no. 23, p. 1919, 2007.

    無法下載圖示 全文公開日期 2026/08/19 (校內網路)
    全文公開日期 2031/08/19 (校外網路)
    全文公開日期 2031/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE