簡易檢索 / 詳目顯示

研究生: 黃彥傑
Yen-Chieh Huang
論文名稱: 對多層大尺寸平板型陽極支撐固態氧化物燃料電池片之製作及電化學性能評估
Fabrication and electrochemical evaluation of large area multi-layer planar anode supported SOFC cell
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 王丞浩
郭兆渝
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 陽極支撐型燃料電池生胚共燒結翹曲強度限制燒結
外文關鍵詞: Large-size planar anode-supported SOFC cells, Constraint sintering., Co-sintering, Strength, Warpage
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用生胚(Green tape)及層疊共燒(Co-sintering),製備尺寸為10 × 10 cm2之中溫型固態氧化物燃料電池片(Intermediate temperature-solid oxide fuel cell, IT-SOFC),全電池組態為NiO+8YSZ陽極支撐層/NiO+8YSZ陽極層/ScSZ電解質層/10GDC陰極阻障層/LSC陰極層,透過對製作參數如生胚厚度、燒結溫度等的調整進行對IT-SOFC電性的測試。
    大尺寸平板陽極支撐型SOFC電池片,主要利用刮刀成型機及網版印刷機等設備製作用以確保所製備電池片具製作穩定性及良好電性。生胚共燒製作完成的陽極半電池(Half cell)基板,利用光學非接觸式平面度量測儀及機械萬能測試機進行基板平面度及強度測試。結果顯示各層生胚於燒結時的收縮不同導致基板翹曲,而翹曲產生源於限制燒結(Constraint sintering),其程度可藉由陽極支撐層厚度作調整;不同厚度的半電池基板,於三點抗折的強度表現大致相同,但可承受的最大壓強隨厚度增加而加大。
    以網版印刷製程在陽極半電池基板上逐層製作並燒結陰極阻障層(10GDC)及陰極層(LSC),將此單電池封裝並利用電化學分析儀進行測量。陽極端通入氫氣,陰極端通入空氣,操作溫度範圍設定在650℃-750℃之間,研究氣體流量的差異、操作溫度的不同、陽極支撐層厚薄及不同半電池燒結溫度對於電性表現的影響。結果顯示隨其體流量增加及操作溫度上升,電流密度及電功率密度皆呈現上升趨勢;而隨陽極支撐層厚度下降及半電池燒結溫度提高電性達最高,於750℃下運行8小時後電流可高達103.27 A,最高電功率密度為892.70 mW/cm2。實驗結果說明以量產設備及手法所製備的SOFC電池片,除具量產性及良好燒結良率外,還能夠於中溫操作條件下有良好的電性表現。


    In this study, tape casting and co-sintering processes were utilized to prepare Intermediate Temperature-Solid Oxide fuel cell (Fuel Cells) (IT-SOFCs) with dimensions of 10 × 10 cm2. The full cell configuration consisted of a NiO+8YSZ anode supported layer / NiO+8YSZ anode layer / ScSZ electrolyte layer / 10GDC cathode barrier layer / LSC cathode layer. Electrical properties of these cells were tested by adjusting the production parameters such as green sheet thickness, sintering temperature, etc.
    Large-size planar anode-supported SOFC cells were prepared using a wet ceramic process. Production equipment including doctor blade casting machines and screen printing machines were mainly employed to ensure that the cells are manufacturability. The anode half-cell substrate was produced by laminating green casted sheets and co-firing. The flatness and strength of the substrate were evaluated using optical non-contact planar measuring instrument and mechanical universal testing machine. The results revealed that the different shrinkage of each green sheet layer during sintering led to substrate warping, and the warping attributed to constraint sintering effect. The warp level could be adjusted by varying the thickness of the anode support layer. On the other hand, three-point bending test of half-cell substrates with different thicknesses is roughly the same, but the maximum pressure tolerance increases as the thickness increases.
    The cathode barrier layer (10GDC) and cathode layer (LSC) were produced and sintered layer by layer on the anode half-cell substrate using a screen printing process. The full cell was encapsulated and its electrochemical behavior was evaluated by conducting measurements using an electrochemical analyzer. Hydrogen gas was supplied at the anode side while air was supplied at the cathode side, with the operating temperature range set between 650°C and 750°C. The effects of differences in gas flow, operating temperatures, anode supported layer thickness, and different half-cell sintering temperatures on electrochemical properties were investigated. The results revealed that as the gas flow rate and the operating temperature increase, the current density and electrical power density both show an upward trend; as the thickness of the anode-supported layer decreases and the sintering temperature of the half-cell increases, the electrical properties reach the highest level, and the current can reach the maximum after running at 750°C for 8 hours up to 103.27 A, with a maximum electrical power density of 892.70 mW/cm2. The experimental results demonstrated that SOFC cells prepared with mass production equipment and techniques, in addition to mass production and good sintering yield, can also have good electrical performance under medium-temperature operating conditions.

    中文摘要 I Abstract II 誌 謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的與動機 3 第二章 文獻回顧 5 2.1 固態氧化物燃料電池 5 2.1.1 固態氧化物燃料電池簡介 5 2.1.2 固態氧化物燃料電池之運作原理 8 2.1.3 平板式固體氧化物燃料電池構造 9 2.1.4 固體氧化物燃料電池的電壓及效率[7] 11 2.1.5 燃料電池的性能 14 2.2 平板式固體氧化物燃料電池 16 2.2.1 陽極 18 2.2.2 電解質 20 2.2.3 陰極及陰極阻障層 21 2.3 大尺寸板式陽極支撐型電池芯片 23 2.4 電池片製作及設備 26 2.4.1 流涎漿料 28 2.4.2 流涎機 31 2.4.3 網版印刷機 33 2.5 電池片電性測試[7] 34 第三章 實驗步驟及流程 36 3.1 實驗步驟 36 3.1.1 實驗流程 36 3.1.2 全電池製作流程 38 3.1.3 全電池製作 40 3.2 實驗材料 41 3.3 實驗儀器及設備 42 3.3.1 熱重分析儀 43 3.3.2 熱游離掃描式電子顯微鏡 43 3.4 電池片機械結構分析 44 3.4.1 半電池平面度分析 44 3.4.2 半電池基板彎曲強度分析 45 3.5 電化學性能測試分析 46 3.5.1 單電池封裝 47 第四章 結果與討論 48 4.1 大尺寸半電池生胚共燒結及平面度量測 48 4.1.1 低溫脫脂 49 4.1.2 高溫燒結 52 4.2 半電池基板抗折強度分析 58 4.3 半電池片製作穩定性評估 62 4.3.1 生胚製程 63 4.3.2 生胚共燒結 64 4.4 大尺寸全電池電性特性分析 65 4.4.1 不同進氣流量 65 4.4.2 不同操作溫度 72 4.4.3 不同陽極支撐層厚度 75 4.4.4 不同半電池片燒結溫度 78 第五章 結論 83 第六章 未來展望 85 第七章 參考文獻 89

    [1] (2020). RENEWABLE CAPACITY STATISTICS 2021.
    [2] K. Corporation, "Kyocera_3kW Solid-Oxide Fuel Cell for Institutional Cogeneration," 2017.
    [3] K. K. a. M. Kendall, "High-temperature Solid Oxide Fuel Cells for the 21st Century, Second Edition_ Fundamentals, Design and Applications.," Elsevier, 2016.
    [4] B. Sun et al., "Numerical design and evaluation of ammonia fueled solid oxide fuel cell (SOFC) power systems with different integration architecture: Efficiency, power density and thermal safety," Energy Conversion and Management, vol. 298, 2023, doi: 10.1016/j.enconman.2023.117804.
    [5] A. O. Omosun, A. Bauen, N. P. Brandon, C. S. Adjiman, and D. Hart, "Modelling system efficiencies and costs of two biomass-fuelled SOFC systems," Journal of Power Sources, vol. 131, no. 1-2, pp. 96-106, 2004, doi: 10.1016/j.jpowsour.2004.01.004.
    [6] 韋文誠, 固態燃料電池技術. 高立圖書有限公司, 2013.
    [7] R. O’HAYRE, "Fuel Cell Fundamentals," in Fuel Cell Fundamentals, Third ed.: WILEY, 2016.
    [8] M. Stelter, A. Reinert, B. E. Mai, and M. Kuznecov, "Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units," Journal of Power Sources, vol. 154, no. 2, pp. 448-455, 2006, doi: 10.1016/j.jpowsour.2005.10.023.
    [9] A. B. R. Leah, M. Lankin, A. Selcuk, M. Rahman, A. Clare, L. Rees, S. Phillip, S. and M. a. M. Selby, "Ceres Power Steel Cell Technology: Rapid Progress Towards a Truly Commercially Viable SOFC," The Electrochemical Society, vol. 68, pp. 95-107, 2015.
    [10] P. Bance, N. P. Brandon, B. Girvan, P. Holbeche, S. O’Dea, and B. C. H. Steele, "Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power," Journal of Power Sources, vol. 131, no. 1-2, pp. 86-90, 2004, doi: 10.1016/j.jpowsour.2003.11.077.
    [11] D. Udomsilp, C. Lenser, O. Guillon, and N. H. Menzler, "Performance Benchmark of Planar Solid Oxide Cells Based on Material Development and Designs," Energy Technology, vol. 9, no. 4, 2021, doi: 10.1002/ente.202001062.
    [12] A. K. Padinjarethil, F. R. Bianchi, B. Bosio, and A. Hagen, "Electrochemical Characterization and Modelling of Anode and Electrolyte Supported Solid Oxide Fuel Cells," Frontiers in Energy Research, vol. 9, 2021, doi: 10.3389/fenrg.2021.668964.
    [13] G. Kaur, "Solid Oxide Fuel Cell Components : Interfacial Compatibility of SOFC Glass Seals," doi: 10.1007/978-3-319-25598-9. Springer International.
    [14] G. Kaur, "Solid Oxide Fuel Cell Components Interfacial Compatibility of SOFC Glass Seals," Springer, p. 49, 2016.
    [15] L. Ren, X. Luo, and H. Zhou, "The tape casting process for manufacturing low‐temperature co‐fired ceramic green sheets: A review," Journal of the American Ceramic Society, vol. 101, no. 9, pp. 3874-3889, 2018, doi: 10.1111/jace.15694.
    [16] X. Chen et al., "Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing," Journal of Materials Science & Technology, vol. 35, no. 4, pp. 695-701, 2019, doi: 10.1016/j.jmst.2018.10.015.
    [17] H. Abe, K. Murata, T. Fukui, W. J. Moon, K. Kaneko, and M. Naito, "Microstructural control of Ni–YSZ cermet anode for planer thin-film solid oxide fuel cells," Thin Solid Films, vol. 496, no. 1, pp. 49-52, 2006, doi: 10.1016/j.tsf.2005.08.191.
    [18] B. R. Roy, N. M. Sammes, T. Suzuki, Y. Funahashi, and M. Awano, "Mechanical properties of micro-tubular solid oxide fuel cell anodes," Journal of Power Sources, vol. 188, no. 1, pp. 220-224, 2009, doi: 10.1016/j.jpowsour.2008.11.076.
    [19] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, and Y. Fujishiro, "Effect of anode functional layer on energy efficiency of solid oxide fuel cells," Electrochemistry Communications, vol. 13, no. 9, pp. 959-962, 2011, doi: 10.1016/j.elecom.2011.06.011.
    [20] J. Hu et al., "Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs," Journal of Membrane Science, vol. 318, no. 1-2, pp. 445-451, 2008, doi: 10.1016/j.memsci.2008.03.008.
    [21] A. Faes, A. Hessler‐Wyser, D. Presvytes, C. G. Vayenas, and J. Van herle, "Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis," Fuel Cells, vol. 9, no. 6, pp. 841-851, 2009, doi: 10.1002/fuce.200800147.
    [22] F. T. D. Simwonis, D. Sto¨ver, "Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells," Solid State Ionics, vol. 132(2000), pp. 241-251, 2000.
    [23] Z. Jiao, N. Takagi, N. Shikazono, and N. Kasagi, "Study on local morphological changes of nickel in solid oxide fuel cell anode using porous Ni pellet electrode," Journal of Power Sources, vol. 196, no. 3, pp. 1019-1029, 2011, doi: 10.1016/j.jpowsour.2010.08.047.
    [24] Z. Yan, A. He, S. Hara, and N. Shikazono, "Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms," Energy Conversion and Management, vol. 198, 2019, doi: 10.1016/j.enconman.2019.111916.
    [25] K. Yakal‐Kremski, J. S. Cronin, Y. C. K. Chen‐Wiegart, J. Wang, and S. A. Barnett, "Studies of Solid Oxide Fuel Cell Electrode Evolution Using 3D Tomography," Fuel Cells, vol. 13, no. 4, pp. 449-454, 2013, doi: 10.1002/fuce.201200177.
    [26] J. Geng, Z. Jiao, D. Yan, L. Jia, J. Pu, and J. Li, "Comparative study on solid oxide fuel cell anode microstructure evolution after long-term operation," Journal of Power Sources, vol. 495, 2021, doi: 10.1016/j.jpowsour.2021.229792.
    [27] Y.-c. K. Chen-Wiegart, D. Kennouche, J. Scott Cronin, S. A. Barnett, and J. Wang, "Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes," Applied Physics Letters, vol. 108, no. 8, 2016, doi: 10.1063/1.4942459.
    [28] W. Guo and J. Liu, "The effect of nickel oxide microstructure on the performance of Ni–YSZ anode-supported SOFCs," Solid State Ionics, vol. 179, no. 27-32, pp. 1516-1520, 2008, doi: 10.1016/j.ssi.2008.01.027.
    [29] A. Sanson, P. Pinasco, and E. Roncari, "Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs," Journal of the European Ceramic Society, vol. 28, no. 6, pp. 1221-1226, 2008, doi: 10.1016/j.jeurceramsoc.2007.10.001.
    [30] T. Yamaguchi et al., "Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature," International Journal of Hydrogen Energy, vol. 39, no. 34, pp. 19731-19736, 2014, doi: 10.1016/j.ijhydene.2014.09.128.
    [31] T. S. Toshio Suzuki, Yoshihiro Funahashi, "Impact of Anode Microstructure on Solid Oxide Fuel Cells," SCIENCE, vol. page.325, 2009.8.14.
    [32] D. Lee, W. Kim, S. Choi, J. Kim, H. Lee, and J. Lee, "Characterization of ZrO co-doped with ScO and CeO electrolyte for the application of intermediate temperature SOFCs," Solid State Ionics, vol. 176, no. 1-2, pp. 33-39, 2005, doi: 10.1016/j.ssi.2004.07.013.
    [33] K. Kim et al., "Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs," Solid State Ionics, vol. 177, no. 19-25, pp. 2155-2158, 2006, doi: 10.1016/j.ssi.2006.02.011.
    [34] C.-h. Park, Y. H. Kim, H. Jeong, B.-R. Won, H. Jeon, and J.-h. Myung, "Development of robust YSZ thin-film electrolyte by RF sputtering and anode support design for stable IT-SOFC," Ceramics International, vol. 49, no. 20, pp. 32953-32961, 2023, doi: 10.1016/j.ceramint.2023.07.270.
    [35] S. Sønderby, B. H. Christensen, K. P. Almtoft, L. P. Nielsen, and P. Eklund, "Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes," Surface and Coatings Technology, vol. 281, pp. 150-156, 2015, doi: 10.1016/j.surfcoat.2015.09.058.
    [36] C. J. Chour KW, Xu R., "<Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide.pdf>," 1997.
    [37] D. Yang et al., "Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte," Journal of Power Sources, vol. 164, no. 1, pp. 182-188, 2007, doi: 10.1016/j.jpowsour.2006.09.102.
    [38] W. Yu et al., "Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 33, no. 1, 2015, doi: 10.1116/1.4904206.
    [39] R. Yan, D. Ding, B. Lin, M. Liu, G. Meng, and X. Liu, "Thin yttria-stabilized zirconia electrolyte and transition layers fabricated by particle suspension spray," Journal of Power Sources, vol. 164, no. 2, pp. 567-571, 2007, doi: 10.1016/j.jpowsour.2006.11.060.
    [40] D. Rotureau, J. P. Viricelle, C. Pijolat, N. Caillol, and M. Pijolat, "Development of a planar SOFC device using screen-printing technology," Journal of the European Ceramic Society, vol. 25, no. 12, pp. 2633-2636, 2005, doi: 10.1016/j.jeurceramsoc.2005.03.115.
    [41] M. Gaudon, C. Laberty-Robert, F. Ansart, and P. Stevens, "Thick YSZ films prepared via a modified sol–gel route: Thickness control (8–80μm)," Journal of the European Ceramic Society, vol. 26, no. 15, pp. 3153-3160, 2006, doi: 10.1016/j.jeurceramsoc.2005.09.026.
    [42] R.-J. Yang et al., "Fabrication and characterization of a Sm0.2Ce0.8O1.9 electrolyte film by the spin-coating method for a low-temperature anode-supported solid oxide fuel cells," Journal of Power Sources, vol. 206, pp. 111-118, 2012, doi: 10.1016/j.jpowsour.2012.01.024.
    [43] J. C. De Vero et al., "Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ thin film," Journal of Power Sources, vol. 377, pp. 128-135, 2018, doi: 10.1016/j.jpowsour.2017.12.010.
    [44] K. Develos-Bagarinao et al., "Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells," Nano Energy, vol. 52, pp. 369-380, 2018, doi: 10.1016/j.nanoen.2018.08.014.
    [45] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M. E. Brito, and H. Kishimoto, "Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes," Journal of Alloys and Compounds, vol. 452, no. 1, pp. 41-47, 2008, doi: 10.1016/j.jallcom.2006.12.150.
    [46] R. A. Budiman, T. Yamaguchi, T. Ishiyama, K. Develos-Bagarinao, K. Yamaji, and H. Kishimoto, "Interlayer modification for high-performance and stable solid oxide electrolysis cell," Materials Letters, vol. 309, 2022, doi: 10.1016/j.matlet.2021.131419.
    [47] X. Zhou, "Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films," Solid State Ionics, vol. 175, no. 1-4, pp. 19-22, 2004, doi: 10.1016/j.ssi.2004.09.040.
    [48] V. Wilde, H. Störmer, J. Szász, F. Wankmüller, E. Ivers-Tiffée, and D. Gerthsen, "Gd0.2Ce0.8O2 Diffusion Barrier Layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3−δ Cathode and Y0.16Zr0.84O2 Electrolyte for Solid Oxide Fuel Cells: Effect of Barrier Layer Sintering Temperature on Microstructure," ACS Applied Energy Materials, vol. 1, no. 12, pp. 6790-6800, 2018, doi: 10.1021/acsaem.8b00847.
    [49] R. Knibbe et al., "Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC," Journal of the American Ceramic Society, vol. 93, no. 9, pp. 2877-2883, 2010, doi: 10.1111/j.1551-2916.2010.03763.x.
    [50] F. Teocoli, D. W. Ni, K. Brodersen, S. P. V. Foghmoes, S. Ramousse, and V. Esposito, "Effects of co-sintering in self-standing CGO/YSZ and CGO/ScYSZ dense bi-layers," Journal of Materials Science, vol. 49, no. 15, pp. 5324-5333, 2014, doi: 10.1007/s10853-014-8235-y.
    [51] H. P. Dasari et al., "Record-low sintering-temperature (600 °C) of solid-oxide fuel cell electrolyte," Journal of Alloys and Compounds, vol. 672, pp. 397-402, 2016, doi: 10.1016/j.jallcom.2016.02.184.
    [52] A. K. Baral, H. P. Dasari, B.-K. Kim, and J.-H. Lee, "Effect of sintering aid (CoO) on transport properties of nanocrystalline Gd doped ceria (GDC) materials prepared by co-precipitation method," Journal of Alloys and Compounds, vol. 575, pp. 455-460, 2013, doi: 10.1016/j.jallcom.2013.05.191.
    [53] V. Gil, J. Tartaj, C. Moure, and P. Duran, "Rapid densification by using Bi2O3 as an aid for sintering of gadolinia-doped ceria ceramics," Ceramics International, vol. 33, no. 3, pp. 471-475, 2007, doi: 10.1016/j.ceramint.2005.10.012.
    [54] M. Morales et al., "Enhanced Performance of Gadolinia-Doped Ceria Diffusion Barrier Layers Fabricated by Pulsed Laser Deposition for Large-Area Solid Oxide Fuel Cells," ACS Applied Energy Materials, vol. 1, no. 5, pp. 1955-1964, 2018, doi: 10.1021/acsaem.8b00039.
    [55] H. Lee, J. Park, Y. Lim, and Y.-B. Kim, "Lowering the sintering temperature of a gadolinia-doped ceria functional layer using a layered Bi2O3 sintering aid for solid oxide fuel cells," Ceramics International, vol. 48, no. 2, pp. 2865-2871, 2022, doi: 10.1016/j.ceramint.2021.10.076.
    [56] W. Li, S. Wu, J. Zhu, W. Zhang, W. Guan, and J. Li, "Real-time deformation and stress response of the planar SOFC during sintering," Journal of the European Ceramic Society, vol. 44, no. 4, pp. 2242-2250, 2024, doi: 10.1016/j.jeurceramsoc.2023.11.057.
    [57] N. H. Menzler, J. Malzbender, P. Schoderböck, R. Kauert, and H. P. Buchkremer, "Sequential Tape Casting of Anode‐Supported Solid Oxide Fuel Cells," Fuel Cells, vol. 14, no. 1, pp. 96-106, 2013, doi: 10.1002/fuce.201300153.
    [58] S. Lee et al., "Highly durable solid oxide fuel cells: suppressing chemical degradationviarational design of a diffusion-blocking layer," Journal of Materials Chemistry A, vol. 6, no. 31, pp. 15083-15094, 2018, doi: 10.1039/c8ta04974b.
    [59] M. Liu and Y. Liu, "Multilayer tape casting of large-scale anode-supported thin-film electrolyte solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 44, no. 31, pp. 16976-16982, 2019, doi: 10.1016/j.ijhydene.2019.04.161.
    [60] A. L. Snowdon, Z. Jiang, and R. Steinberger‐Wilckens, "Five‐layer reverse tape casting of IT‐SOFC," International Journal of Applied Ceramic Technology, vol. 19, no. 1, pp. 289-298, 2021, doi: 10.1111/ijac.13911.
    [61] H. Moon, S. Kim, S. Hyun, and H. Kim, "Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing," International Journal of Hydrogen Energy, vol. 33, no. 6, pp. 1758-1768, 2008, doi: 10.1016/j.ijhydene.2007.12.062.
    [62] R. K. Nishihora, P. L. Rachadel, M. G. N. Quadri, and D. Hotza, "Manufacturing porous ceramic materials by tape casting—A review," Journal of the European Ceramic Society, vol. 38, no. 4, pp. 988-1001, 2018, doi: 10.1016/j.jeurceramsoc.2017.11.047.
    [63] E. R. T. Richard E. Mistler, "Tape Casting theory and practice," 2000. The American Ceramic Society.
    [64] M. R. Somalu, A. Muchtar, W. R. W. Daud, and N. P. Brandon, "Screen-printing inks for the fabrication of solid oxide fuel cell films: A review," Renewable and Sustainable Energy Reviews, vol. 75, pp. 426-439, 2017, doi: 10.1016/j.rser.2016.11.008.
    [65] B. R. S. A. E. R. B. G. C. D. Lokhande, "Simple Chemical Methods for Thin Film Deposition - Synthesis and Applications," Springer, 2023.
    [66] E. J. Hearn, "Mechanics of Materials 3rd ed.," pp. 62-91, 1997, doi: https://doi.org/10.1016/B978-0-7506-3265-2.X5000-2. Butterworth-Heinemann.
    [67] Z. Fu, A. Roosen, and M. Menon, "Shrinkage of Tape Cast Products During Binder Burnout," Journal of the American Ceramic Society, vol. 98, no. 1, pp. 20-29, 2014, doi: 10.1111/jace.13270.
    [68] Y. Sayan, V. Venkatesan, E. Guk, H. Wu, and J. S. Kim, "Single‐step fabrication of an anode supported planar single‐chamber solid oxide fuel cell," International Journal of Applied Ceramic Technology, vol. 15, no. 6, pp. 1375-1387, 2018, doi: 10.1111/ijac.13012.
    [69] A. Kristoersson, "Comparison of Different Binders for
    Water-based Tape Casting of Alumina.," Journal of the European Ceramic Society, vol. 18, no. 14, pp. 2123-2131, 16 June 1998.
    [70] R. Mücke, N. H. Menzler, H. P. Buchkremer, and D. Stöver, "Cofiring of Thin Zirconia Films During SOFC Manufacturing," Journal of the American Ceramic Society, vol. 92, no. s1, 2009, doi: 10.1111/j.1551-2916.2008.02707.x.
    [71] Z. Ruhma, K. Yashiro, I. Oikawa, H. Takamura, and T. Kawada, "Metal-supported SOFC Fabricated by Tape Casting and Its Characterization: A Study of the Co-sintering Process," Journal of Engineering and Technological Sciences, vol. 53, no. 5, 2021, doi: 10.5614/j.eng.technol.sci.2021.53.5.11.
    [72] M. Cologna, V. M. Sglavo, and M. Bertoldi, "Sintering and Deformation of Solid Oxide Fuel Cells Produced by Sequential Tape Casting," International Journal of Applied Ceramic Technology, vol. 7, no. 6, pp. 803-813, 2013, doi: 10.1111/j.1744-7402.2009.02390.x.
    [73] A. Hussain et al., "Durability improvement of large-area anode supported solid oxide fuel cell fabricated by 4-layer sequential co-lamination and co-firing process," Journal of Power Sources, vol. 573, 2023, doi: 10.1016/j.jpowsour.2023.233160.
    [74] A. Selçuk and A. Atkinson, "Strength and Toughness of Tape‐Cast Yttria‐Stabilized Zirconia," Journal of the American Ceramic Society, vol. 83, no. 8, pp. 2029-2035, 2004, doi: 10.1111/j.1151-2916.2000.tb01507.x.
    [75] X. Fang, J. Zhu, and Z. Lin, "Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell," Energies, vol. 11, no. 7, 2018, doi: 10.3390/en11071735.
    [76] M. Pihlatie, A. Kaiser, and M. Mogensen, "Mechanical properties of NiO/Ni–YSZ composites depending on temperature, porosity and redox cycling," Journal of the European Ceramic Society, vol. 29, no. 9, pp. 1657-1664, 2009, doi: 10.1016/j.jeurceramsoc.2008.10.017.
    [77] M. Radovic and E. Lara-Curzio, "Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen," Acta Materialia, vol. 52, no. 20, pp. 5747-5756, 2004, doi: 10.1016/j.actamat.2004.08.023.
    [78] Y. T. Kim, Z. Jiao, and N. Shikazono, "Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction," Journal of Power Sources, vol. 342, pp. 787-795, 2017, doi: 10.1016/j.jpowsour.2016.12.113.
    [79] K. A. K. X.J. Chen, S.H. Chan, L.G. Yu, "Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte," Materials Science and Engineering, vol. A335 pp. 246–252, 2002.
    [80] S. Hui et al., "A brief review of the ionic conductivity enhancement for selected oxide electrolytes," Journal of Power Sources, vol. 172, no. 2, pp. 493-502, 2007, doi: 10.1016/j.jpowsour.2007.07.071.
    [81] H. W. Lee et al., "Constrained Sintering in Fabrication of Solid Oxide Fuel Cells," Materials (Basel), vol. 9, no. 8, Aug 9 2016, doi: 10.3390/ma9080675.
    [82] O. Guillon, L. Weiler, and J. Rödel, "Anisotropic Microstructural Development During the Constrained Sintering of Dip‐Coated Alumina Thin Films," Journal of the American Ceramic Society, vol. 90, no. 5, pp. 1394-1400, 2007, doi: 10.1111/j.1551-2916.2007.01565.x.
    [83] G. Okuma et al., "Anisotropic microstructural evolution and coarsening in free sintering and constrained sintering of metal film by using FIB-SEM tomography," Acta Materialia, vol. 215, 2021, doi: 10.1016/j.actamat.2021.117087.
    [84] C. Nicollet et al., "Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration," Journal of Power Sources, vol. 372, pp. 157-165, 2017, doi: 10.1016/j.jpowsour.2017.10.064.
    [85] G. Zhang et al., "The effect of Fe2O3 sintering aid on Gd0.1Ce0.9O1.95 diffusion barrier layer and solid oxide fuel cell performance," International Journal of Hydrogen Energy, vol. 48, no. 57, pp. 21908-21919, 2023, doi: 10.1016/j.ijhydene.2023.03.004.
    [86] Y. L. Kuo, Y. M. Su, and H. L. Chou, "A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance," Phys Chem Chem Phys, vol. 17, no. 21, pp. 14193-200, Jun 7 2015, doi: 10.1039/c5cp00735f.
    [87] Y.-L. Kuo, S. D. Kencana, and Y.-M. Su, "Oxygen vacancy levels on gadolinia-doped ceria interlayer deposited by atmospheric pressure plasma jet for solid oxide fuel cells," Ceramics International, vol. 44, no. 13, pp. 15262-15268, 2018, doi: 10.1016/j.ceramint.2018.05.169.
    [88] Y.-L. Kuo, S. D. Kencana, and Y.-J. Lin, "Atmospheric pressure plasma jet fabricating of porous silver electrocatalyst as a promising approach to the creation of cathode layers of low temperature solid oxide fuel cells," Surface and Coatings Technology, vol. 410, 2021, doi: 10.1016/j.surfcoat.2020.126810.
    [89] Y. L. K. Y. M. Su, C. M. Lin, S. F. Lee, "One-step Fabrication of Tetragonal ZrO2 Particles by Atmospheric Pressure Plasma Jet.," Powder Technology, vol. 267, pp. 74-79, 2014, doi: 10.1016/j.powtec.2014.07.004.

    無法下載圖示 全文公開日期 2034/04/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE