簡易檢索 / 詳目顯示

研究生: 楊柔裕
Jou-Yu Yang
論文名稱: 創新彈簧式靜力平衡機構設計方法:應用於坐站姿轉換輔具
Novel Spring-based Static Balancing Mechanism Design Method: Applied to Sit-to-Stand Assistive Devices
指導教授: 陳羽薰
Yu-Hsun Chen
口試委員: 陳羽薰
石伊蓓
徐冠倫
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 101
中文關鍵詞: 坐站姿轉換輔具靜力平衡機構幾何約束編程變負載機構
外文關鍵詞: Sit-to-stand assistive device, Static balancing mechanism, Geometric constraint programming, Mechanism with variable payloads
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一基於幾何約束方法(Geometric Constrain Programing)的彈簧式靜力平衡機構設計方法,期望解決現有靜平衡技術之問題,使機構構型與尺寸能夠快速生成,以及避免實現零自由長度彈簧所產生之問題。首先,檢索與分析現有靜平衡設計,歸納其特性,再於靜力平衡機構基本原理的基礎上,提出一種基於幾何約束方法之創新彈簧式靜力平衡機構設計方法。其中藉由「彈力位能同心圓」的作圖,使彈力位能以視覺化的方式呈現於圖面上,以快速生成近似靜平衡的機構尺寸。本研究將此方法應用於坐站姿轉換輔具,以滿足高齡社會對輔具的需求。經由實驗收集受試者於坐到站時的設計規格參數,將其帶入本研究提出的方法中,以生成機構構型與尺寸。依輔助使用者之腿部肌力強度的不同,提出兩種類型的設計實例,又根據不同的負載假設情況,共分為五個設計實例。利用機械系統動力分析軟體ADAMS分析這五個設計實例之總位能與省力效果。在這些設計實例中最小的總位能平均誤差為0.69%。在軟體中加入虛擬馬達,馬達扭矩之最佳的平均省力效果達85%;而若無虛擬馬達、以加入外力方式模擬看護者操作作站姿轉換輔具,最佳的平均省力效果達82%。經過分析這些設計實例的數據,歸納出在幾何約束編程中,設定越多桿件必須通過的精確位置,可降低其總位能誤差,以及總位能誤差與省力效果呈負相關的結論。此外,也認知到此設計方法之侷限,無法達成人體坐到站姿態轉換中,人體質量逐步由椅面轉移至地面、導致機構系統中負載隨運動而減少的情形。最後,選用一組穩定度較高的設計實例製作原型機後,以實驗驗證利用本研究提出的方法所生成的機構,其施加外力平均省力效果高達73%。並且驗證利用本研究提出的創新設計方法所生成的機構,具可行性與近似靜平衡效果。


    This study proposes a spring-based static balancing mechanism design method based on Geometric Constraint Programming, aiming to address issues with existing static balance techniques. The method allows for rapid generation of mechanism configuration and dimensions while avoiding problems associated with implementing zero-length springs. Initially, existing static balance designs are retrieved and analyzed to deduce their characteristics. Then, building upon the basic principles of static balancing mechanisms, an innovative spring-based static balancing mechanism design method based on Geometric Constraint Programming is proposed.
    By plotting the "elastic potential energy concentric circles," the elastic potential energy is visualized on the graph, facilitating the rapid generation of approximate static balancing mechanism dimensions. This method is applied to the design of assistive devices for sit-to-stand transitions to meet the needs of an aging society. Experimental data on design specification parameters during sit-to-stand transitions is collected from participants and incorporated into the proposed method to generate mechanism configurations and dimensions.
    Two types of design examples are presented based on the strength of the user's leg muscle, further divided into five design examples according to different loading assumptions. The total potential energy and energy-saving effects of these five design examples are analyzed using the mechanical system dynamics analysis software ADAMS. The average minimum total potential energy error among these design examples is 0.69%. By integrating virtual motors into the software, the average optimal energy-saving effect of motor torque reaches 85%. Without virtual motors, simulating caregiver-operated sit-to-stand transition assistive devices through external force addition achieves an average energy-saving effect of 82%.
    After analyzing the data from these design examples, we concluded that in Geometric Constraint Programming, setting more precise positions that the members must pass can reduce the total potential energy error and that the total potential energy error is negatively correlated with the energy-saving effect. In addition, we are also aware of the limitations of this design method. It cannot achieve the situation where the human body's mass gradually transfers from the chair surface to the ground when the human body changes from sitting to standing, causing the load in the mechanism system to decrease with movement.
    Finally, a set of design examples with higher stability is selected to create prototype machines. Experimental verification demonstrates that mechanisms generated using the proposed method achieve an average energy-saving effect of up to 73% when subjected to external force. The feasibility and approximate static balance effect of mechanisms generated using the innovative design method proposed in this study are confirmed through experimentation.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 創新方法之應用實例:坐站姿轉換輔具 4 1.3 文獻探討 5 1.3.1 靜平衡機構 5 1.3.2 坐站姿轉換裝置 7 1.3.3 幾何約束編程 9 1.4 靜力平衡機構基本原理 9 1.5 論文架構 12 第二章 研究方法 15 2.1 基礎靜力平衡機構之驗證 15 2.2 幾何約束編程之尺寸合成方法 17 2.3 創新彈簧式靜力平衡機構設計方法 20 第三章 設計實例Ⅰ:重心前移 34 3.1 運動特性與負載設定 35 3.1.1 運動量測方法 37 3.1.2 坐到站之重心位置 38 3.1.3 設計規格之參數設定 40 3.2 設計實例A:假設質量集中於人體重心位置 43 3.2.1 等效人體重心之靜平衡效果模擬 48 3.2.2 各肢段分別考量之靜平衡效果模擬 51 3.3 設計實例B:假設質量分散於人體各肢段 56 3.4 小結 62 第四章 設計實例Ⅱ:重心固定於背桿 64 4.1 設計實例C:假設質量集中於人體重心位置 65 4.1.1 等效人體重心之靜平衡效果模擬 66 4.1.2 各肢段分別考量之靜平衡效果模擬 68 4.2 設計實例D:假設質量分散於人體各肢段 70 4.3 小結 74 第五章 設計實例Ⅲ:負載隨運動變化 76 5.1 設計規格之參數設定 76 5.2 設計實例E: 假設質量集中於人體重心位置 78 第六章 軟體模擬分析與驗證 83 6.1 SolidWorks建模與運動模擬 83 6.2 ADAMS模擬驗證 85 6.2.1 軟體設定 86 6.2.2 模擬驗證 89 第七章 原型機製作與實驗 92 7.1 原型機製作 92 7.2 原型機實驗測試 93 7.3 驗證結果 94 第八章 結論與未來展望 97 8.1 結論 97 8.2 未來展望 98 參考文獻 99

    [1] 顏鴻森, 機構學. 臺北, 東華書局, pp. 35-36, 2003.
    [2] H. S. Yan, Y. T. Chiu, "On the number synthesis of kinematic chains," Mechanism and Machine Theory, vol. 89, pp. 128-144, 2015.
    [3] 謝慶雄, 機構學. 臺北, 美商麥格羅.希爾國際股份有限公司, 2005.
    [4] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W. Matusik, B. Bickel, "Computational design of mechanical characters," Association for Computing Machinery Transactions on Graphics, vol. 32, no. 4, pp. 1-12, 2013.
    [5] E. C. Kinzel, J. P. Schmiedeler, G. R. Pennock, "Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming," Journal of Mechanical Design, vol. 128, no. 5, pp. 1070-1079, 2006.
    [6] E. C. Kinzel, J. P. Schmiedeler, G. R. Pennock, "Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming," Journal of Mechanical Design, vol. 129, no. 11, pp. 1185-1190, 2007.
    [7] J. P. Schmiedeler, B. C. Clark, E. C. Kinzel, G. R. Pennock, "Kinematic Synthesis for Infinitesimally and Multiply Separated Positions Using Geometric Constraint Programming," Journal of Mechanical Design, vol. 136, no. 3, pp. 034503 1-7, 2014.
    [8] J. L. Herder, "Energy-free Systems. Theory, conception and design of statically," PhD thesis, Department of Precision and Microsystems Engineering, Delft University of Technology, Netherlands, 2001.
    [9] Z. W. Yang, C. C. Lan, "An adjustable gravity-balancing mechanism using planar extension and compression springs," Mechanism and Machine Theory, vol. 92, pp. 314-329, 2015.
    [10] K. Hain, "Der Federausgleich von Lasten," Grundlagen der Landtechnik : Verfahren, Konstruktion, Wirtschaft ; Organ d. VDI-Fachgruppe Landtechnik, vol. 2, no. 3, pp. 38-50, 1952.
    [11] 國家發展委員會. "中華民國人口推估." https://pop-proj.ndc.gov.tw/chart.aspx?c=10&uid=66&pid=60 (accessed Apr 1, 2023).
    [12] W. He, D. Goodkind, P. R. Kowal. "An aging world: 2015." United States Census Bureau Washington, DC. https://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf (accessed Apr 1, 2023).
    [13] 李淑貞,余雨軒. "輔助科技分類技術手冊." 內政部多功能輔具資源整合推廣中心,國立陽明大學ICF暨輔助科技研究中心. https://newrepat.sfaa.gov.tw/home/cns15390 (accessed Apr 1, 2023).
    [14] B. E. Dicianno, A. Morgan, J. Lieberman, L. Rosen, "RESNA position on the application of wheelchair standing devices: 2013 current state of the literature," Rehabilitation and Assistive Technologys Engineering, vol. 21, no. 3, pp. 1-16, 2013.
    [15] wheelchair88. "LEO II 最輕盈的站立式輪椅." https://wheelchair88.com.hk/product/leo/ (accessed Apr 1, 2023).
    [16] 康揚. "康揚元氣站." https://www.karma.com.tw/featured_item/sme/ (accessed Apr 1, 2023).
    [17] wheelchair88. "Phoenix II – Power Standing Wheelchair." https://wheelchair88.com/product/phoenix-ii/ (accessed Apr 1, 2023).
    [18] R. Nathan, "A constant force generation mechanism," Journal of Mechanical Design, vol. 107, no. 4, pp. 508-512, 1985.
    [19] P. Y. Lin, W. B. Shieh, D. Z. Chen, "Design of perfectly statically balanced one-DOF planar linkages with revolute joints only," Journal of Mechanical Design, vol. 131, no. 5, pp. 051004 1-9, 2009.
    [20] Y. L. Chu, C. H. Kuo, "A single-degree-of-freedom self-regulated gravity balancer for adjustable payload," Journal of Mechanisms and Robotics, vol. 9, no. 2, pp. 021006 1-8, 2017.
    [21] W. D. van Dorsser, R. Barents, B. M. Wisse, J. L. Herder, "Gravity-Balanced Arm Support With Energy-Free Adjustment," Journal of Medical Devices, vol. 1, no. 2, pp. 151-158, 2007.
    [22] W. D. van Dorsser, R. Barents, B. M. Wisse, M. Schenk, J. L. Herder, "Energy-free adjustment of gravity equilibrators by adjusting the spring stiffness," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 222, no. 9, pp. 1839-1846, 2008.
    [23] B. M. Wisse, W. D. van Dorsser, R. Barents, J. L. Herder, "Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept," 2007 IEEE 10th International Conference on Rehabilitation Robotics, Netherlands, 2007.
    [24] R. Barents, M. Schenk, W. Dorsser, B. Wisse, J. Herder, "Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators," Journal of Mechanical Design, vol. 133, no. 6, pp. 1-12, 2009.
    [25] Agrawal, "Passive gravity-balanced assistive device for sit-to-stand tasks," USA Patent, US 7,601,104 B2, 2009.
    [26] 辛紹傑, 黃建民, 楊軍, 賈廷綱, 張歡歡, 楊吉賢, "輔助站立座椅," 中華人民共和國專利, CN 202409305 U, 2012.
    [27] 廖敏惠, "可輔助站立的輪椅," 中華民國專利, TW 201347744 A, 2013.
    [28] 史豐魁, "自助式如廁起身機構," 南臺科技大學機械工程系暨研究所,台南, 2013.
    [29] 陳正光, "坐墊與背墊可滑動的輔助站立式輪椅," 中華民國專利, TW M519503 U, 2016.
    [30] M. R. Khan, B. Patnaik, S. Patel, "Design and development of a novel sit-to-stand and mobility assistive device for ambulation and elderly," Research into Design for Communities, Volume 1: Proceedings of International Conference on Research into Design 2017, Springer, pp. 801-811, 2017.
    [31] 岳朝國, "新型起身輔具之設計," 碩士, 機械工程系所, 國立交通大學, 新竹市, 2020.
    [32] 宋承靖, "新型輪椅床輔具之靜平衡機構設計," 碩士, 機械工程系, 國立台灣科技大學, 台北市, 2023.
    [33] 顏鴻森, 現代機構學. 台灣, 東華書局, 2020.
    [34] P. de Leva, "Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters," Journal of biomechanics, vol. 29, no. 9, pp. 1223-1230, 1996.
    [35] A. Fattah, S. K. Agrawal, G. Catlin, J. Hamnett, "Design of a passive gravity-balanced assistive device for sit-to-stand tasks," Journal of Mechanical Design, vol. 128, no. 5, pp. 1122-1129, 2006.
    [36] M. A. Hughes, B. S. Myers, M. L. Schenkman, "The role of strength in rising from a chair in the functionally impaired elderly," Journal of biomechanics, vol. 29, no. 12, pp. 1509-1513, 1996.
    [37] J. Li, Q. Xue, S. Yang, X. Han, S. Zhang, M. Li, J. Guo, "Kinematic analysis of the human body during sit-to-stand in healthy young adults," Medicine, vol. 100, no. 22, pp. 1-11, 2021.
    [38] 三柱. "掛簧." https://tw.misumi-ec.com/vona2/detail/221005553070/?KWSearch=%e6%8e%9b%e7%b0%a7&searchFlow=results2products (accessed Aug 10, 2023).

    無法下載圖示 全文公開日期 2026/04/12 (校內網路)
    全文公開日期 2026/04/12 (校外網路)
    全文公開日期 2026/04/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE