簡易檢索 / 詳目顯示

研究生: 江景昇
Jing-Sheng Chiang
論文名稱: 黃銅於原子力顯微鏡接觸式量測模式造成之應力腐蝕
The stress corrosion of brass by contact model atomic force microscopy
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 李志偉
Jyh-Wei Lee
鄭偉鈞
Wei-Chun Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化亞銅孔蝕黃銅原子力顯微鏡腐蝕
外文關鍵詞: corrosion pits, cuprous oxide, Atomic force microscopy, brass, corrosion
相關次數: 點閱:258下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以原子力顯微鏡(AFM)於水溶液環境即時觀察黃銅合金於0.1 wt% 氯化銅水溶液中的腐蝕現象。結合場發射電子微探儀,觀察分析黃銅試片表面於腐蝕時所生成的蝕孔及氧化物,並利用X光繞射儀分析試片表面之腐蝕生成物成分。研究發現,原子力顯微鏡可以即時觀察銅合金於腐蝕溶液中產生奈米等級蝕孔與腐蝕生成物的過程,可用來研究黃銅於氯化銅水溶液受AFM探針影響誘發產生應力腐蝕。當C26000商用黃銅合金於0.1 wt% 氯化銅水溶液中時,試片表面會被侵蝕,因而產生蝕孔,表面生成顆粒狀的Cu2O,其顆粒尺寸與試片表面平均粗糙度(Ra)均隨著腐蝕浸泡時間增加而變大。當AFM探針的作用力施加在試片表面掃描時,探針掃描作用力會誘發應力腐蝕。


    The atomic force microscopy (AFM) has been employed to investigate the in-situ corrosion phenomena of the brass immersed in 0.1 wt% CuCl2 aqueous solution. A field emission EPMA is also used to analyze the corrosion pits and corrosion products of brass. The crystalline phases of the corrosion products were examined by an X-ray diffractometer. It is found that the in-situ formation phenomena of corrosion pits and corrosion products on nano scale can be explored by the liquid mode AFM. The initial of stress corrosion reaction and corrosion kinetics of brass induced by the AFM tip in 0.1wt% CuCl2 aqueous solution are also investigated. It is found that the surface of commercial C26000 brass was attacked by the 0.1 wt% cuprous chloride aqueous solution observed by an in-situ AFM. Corrosion pits and Cu2O oxide particle are found on the alloy surface. The particle size and average surface roughness of the specimen increase with immersion time. The stress induced corrosion phenomena is observed when the AFM tip scans on the specimen surface.

    第一章 前言 1 第二章 文獻回顧 3  2.1腐蝕與電化學腐蝕 3   2.1.1 熱力學與電極電位 5    2.1.1.1 自由能(Gibbs free energy) 5    2.1.1.2 電極電位與電動勢 6    2.1.1.3 參考電極 7   2.1.2腐蝕動力學 9    2.1.2.1電化學極化 9    2.1.2.2 混合電位理論 12    2.1.2.3 腐蝕電位與腐蝕電流 13    2.1.2.4腐蝕速率的量測 16  2.2 腐蝕反應之形態與機構 17   2.2.1 腐蝕形態 17   2.2.2 銅合金腐蝕反應機構 19    2.2.2.1 加凡尼腐蝕(Galvanic corrosion) 19    2.2.2.2 穿孔腐蝕(Pitting corrosion) 21    2.2.2.3 間隙腐蝕(Crevice corrosion) 22    2.2.2.4 應力腐蝕(SC)與應力腐蝕破裂(SCC) 22    2.2.2.5 選擇性侵蝕(selective leaching) 28  2.3 黃銅腐蝕 29   2.3.1 銅鋅相圖 29   2.3.2 銅合金之特性 30   2.3.3 黃銅脫鋅之(dezincification)行為 30   2.3.4 環境對脫鋅行為之影響 32   2.3.5 脫鋅之理論與防治 33  2.4 鋅腐蝕 34 第三章 實驗方法 35  3.1 實驗流程 35  3.2 實驗材料與試片準備 36  3.3 測試條件 37  3.4 實驗分析設備與技術 37  3.5 原子力顯微鏡分析 39  3.6 微觀結構及晶相分析 46   3.6.1 場發射電子微探儀( FE-EPMA ) 46   3.6.2 X光繞射分析( XRD , X-ray diffraction ) 46   3.6.3 腐蝕形態金相觀察(OM) 46   3.6.4 場發射電子顯微鏡觀察( FE-SEM ) 47  3.7 電化學實驗 48   3.7.1 恆電位儀實驗設備及裝置 48 第四章 實驗結果 52  4.1試樣原材 52  4.2浸泡試驗之原子力顯微鏡觀察 54   4.2.1力曲線(Forced Curve)分析 54   4.2.2 氯化銅(CuCl2)溶液 56    4.2.2.1 大氣環境下原材之AFM表面量測 56    4.2.2.2 AFM連續式掃描 57     4.2.2.2.1 SEM-EDS觀察 65     4.2.2.2.2 表面金相觀察 67     4.2.2.2.3 XRD繞射分析與EPMA定性分析 68    4.2.2.3 AFM間斷式掃描 71   4.2.3去離子水(DI water) 74  4.3 電化學試驗 76   4.3.1 動電位極化曲線( Potentiodynamic ) 76   4.3.2 循環極化曲線( Cyclic Polarization ) 76   4.3.3 開路電位對時間曲線 77   4.3.4 鐵弗(Tafel)曲線 77 第五章 討論 83  5.1 電化學試驗 83  5.2 原子力顯微鏡試驗 85  5.3 腐蝕反應機構 88   5.3.1應力腐蝕(stress corrosion) 88   5.3.2黃銅脫鋅 88 第六章 結論 90 參考文獻 91

    1. G. Binnig, H. Rohrer, C. Gerber ,and E. Weibel, Physical Rev. Let. 49, pp. 57 (1982).
    2. G. Binnig, C. F. Quate ,and C. Gerber, Physical Rev. Let. 56, pp. 930 (1986).
    3. T. Aastrup, M. Wadsak, M. Schreiner and C. Leygraf, Corrosion Science 42, pp. 957 (2000).
    4. I. F. Kabulska, B. Handke, N. Spiridis, J. Haber ,and J. Korecki, Surface Science 507-510, pp. 865 (2002).
    5. P. Campestrini, E. P. Westing, H. W. Rooijen ,and J. H. Wit, Corrosion Science 42, pp. 1853 (2000).
    6. M. Wadsak, T. Aastrup, I. O. Wallinder, C. Leygraf ,and M. Schreiner, Corrosion Science 44, pp. 791 (2002).
    7. S. Liang, L. J. Qiao ,and W. Y. Chu, “AFM study of local plasticity enhanced by stress corrosion”, Materials Letter 57, pp. 1135-1141 (2003.)
    8. 黃仁清、李志偉、蔡世鴻、許嘉倫、鄭云涵,“應用輕敲式AFM於SK3碳鋼在水中的即時微觀氧化現象探討”, 中國機械工程學會第21屆全國學術研討會(2004年11月26-27日,高雄)。
    9. 李志偉、陳弘凱、陳凡孜、杜正恭、黃仁清,“以電化學原子力顯微鏡(ECAFM)進行420不銹鋼於氯化鈉水溶液之即時腐蝕行為研究”, 中華民國防蝕工程學會,台灣.南投,pp451-466,2004.10.26-29。
    10. 李志偉,“以電化學原子力顯微鏡(ECAFM)進行氮化鉻薄膜即時腐蝕行為之研究”, 中國材料科學年會,台灣.台南,2003.10.21-22。
    11. Z. Wu, Z. Zhang ,and L. Liu, “Electrochemical studies of a Cu(II)- Cu(III) couple: Cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presence of periodate anions.”, Electrochemica Acta, Vol. 42, No. 17, pp. 2719-2723 (1997).
    12. A. Vaskelis, R. Juskenas ,and J. Jaciauskiene, “Copper hydride formation in the electroless copper plating process: in situ X-ray diffraction evidence and electrochemical study”, Electrochemica Acta, Vol. 43, No. 9, pp. 1061-1066 (1998).
    13. M. G. Fontana, Corrosion Engineering, 3rd edition, pp. 688-697.
    14. M. C. Baykul, “Preparation of shape gold tips for STM by using electrochemical etching method”, Materials Science and Engineer B74, pp. 229-233 (2000).
    15. M. Koinuma and K. Uosaki, “AFM tip induced selective electrochemical etching of and metal deposition on p-GaAs(100) surface”, Surface Science 357-358, pp. 565-570 (1996).
    16. J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow ,and P. Marcus, “In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions.”, Electrochemica Acta 48, pp. 1157-1167 (2003).
    17. A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot ,and W. G. Proud, “Electrochemical studies of copper, copper-aluminum and copper- aluminum-silver”, Electrochemica Acta, Vol. 40, No. 16, pp. 2657-2668 (1995).
    18. Y. Tomita, Y. Hasegawa ,and K. Kobayashi, “Nano-scale Cu metal patterning by using an atomic force microscope”, Applied Surface Science 244, pp. 107-110 (2005).
    19. 張錦泉,“鋁合金應力腐蝕及電化行為之影響”,國立台灣大學材料科學與工程學研究所博士學位論文(台灣.台北,1998),第52頁。
    20. Haynes and Baboian, “Laboratory Corrosion Test and Standards”, ASTM Special Technical Publication; 866, (Texas Instruments, Incorporate, USA, 1983), pp. 69.
    21. 柯賢文,“腐蝕及其防制”,全華科技圖書股份有限公司 (台灣,台北,1995)。
    22. W. D. Callister, JR. “Materials Science and Engineering an Introduction 4nd Ed”.
    23. N. G. Fontana and N. D. Greene, "Corrosion Engineering", 3rd edition, 1986, McGraw-Hill.
    24. J. Morales, G. T. Fernandez, P. Esparza, S. Gonzalez, R. C. Salvarezza ,and A. J. Arvia, “ A comparative study on the passivation and localized corrosion of α, β, and α+β brass in Borate Buffer Solution containing Sodium Chloride-1. Electrochemical Data”, Corrosion Science, Vol. 37, No. 2, pp. 211-229 (1995).
    25. J. Morales, G. T. Fernandez, S. Gonzalez, P. Esparza, R. C. Salvarezza ,and A. J. Arvia, “ A comparative study on the passivation and localized corrosion of α-brass and β-brass in Borate Buffer Solution containing Sodium Chloride-3. The effect of temperature”, Corrosion Science, Vol. 40, No. 2/3, pp. 177-190 (1998).
    26. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ”, Prentice Hall International, Inc., pp.235-244 (1997).
    27. H. Cho, G. Sakai, K. Shimanoe ,and N. Yamazoe, “Behavior of oxygen concentration cells using BiCuVOx oxide-ion conductor”, Sensors and Actuators B 108 pp. 335-340 (2005).
    28. H. Lu, K. G. ,and W. Chu, “Determination of tensile stress induced by dezincification layer during corrosion for brass.”, Corrosion Science, Vol. 40, No. 10, pp. 1633-1670 (1998).
    29. G. Biao, Z. Jingwu ,and W. Farong, “In situ TEM observation of dislocation emission, motion induced by anodic dissolution and the initiation of SCC in brass thin foil”, Acta Metal. Sin., 31(4), pp. A156-164 (1995).
    30. J. Li and D. Lampner, “In-situ AFM study of pitting corrosion of Cu thin films”, Colloids and Surface A: Physicochemical and Engineer Aspects 154 pp. 227-237 (1999).
    31. E. Mattsson, Electrochem Acta 3, pp. 279 (1960-1961).
    32. H. Johnson and J. Leja, Corrosion 22, pp. 178 (1966).
    33. 施漢章、陳彥羽、鄒仁江、張一熙、王立華、翁榮洲,“铜合金在含氟環境中的兩種不同的破裂型態”,中華民國防蝕工程學會,台灣.南投,2004.10.26-29,pp. 451-466。
    34. H. L. Meyerheim, H. Zajonz, W. Moritz ,and I. K. Robinson, “Surface alloying and dealloying in Bi/Cu(001) at low coverage”, Surface Science 381, pp. 551-557 (1997).
    35. P. K. Rohatgi, D. Nath, J. K. Kim ,and A. N. Agrawal, “Corrosion and Dealloying of cast lead-free copper alloy-graphite composites”, Corrosion Science 42, pp. 1553-1571 (2000).
    36. J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow ,and P. Marcus, “In situ STM study of the duplex passive films formed on Cu(111) and Cu(001) in 0.1M NaOH” , Science Direct, Corrosion Science 46, pp. 245-264 (2004).
    37. K. W. Gao, W. Y. Chu, H. L. Li, Y. P. Liu ,and L. J. Qiao, “Correspondence between hydrogen enhancing dezincification layer-induced stress and susceptibility to SCC of brass”,Materials Science and Engineering A 371, pp. 51-56. (2004).
    38. A. T. Lombardi and O. G. Jr, “Biological leaching of Mn, Al, Zn, Cu, and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning”, Water Research 36, pp. 3193-3202 (2002).
    39. A. Akcil and H Ciftci, “A study of the Selective leaching of complex sulphides from the Eastern Black Sea Region, Turkey”, Minerals Engineering 15, pp. 457-459 (2002).
    40. Y. K. Chang, J. E. Chang ,and L. C. Chiang, “Leaching behavior and chemical stability of copper buty1 xanthate complex under acidic condition”, Chemosphere 52, pp. 1089-1094 (2003).
    41. J. E. Silva, D. Soares, A. P. Paiva, J. A. Labrincha ,and F. Castro, “Leaching behavior of a galvanic sludge in sulphuric acid and ammoniacal media”, Journal of Hazardous Materials B121, pp. 195-202 (2005).
    42. 范揚琪、王朝正,“黃銅與鑄鐵於輸水系統之腐蝕行為”,中華民國防蝕工程學會,台灣.台中,2005.08.25-26, pp. 27-28。
    43. R. E. R. Hill, “Physical Metallurgy Principles”, 3rd Ed., (PWS Publishing Company, USA, 1991), pp. 11-33.
    44. 郭興蓬、屈鈞娥,“AFM探針刮擦誘導金屬加速溶解行為及緩蝕劑抑制效果的研究”,中華民國防蝕工程學會,台灣.南投,2004.10.26-29,pp. 1387-1392。
    45. H. S. Altundogan, M. Boyrazli ,and F. Tumen, “A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate”, Minerals Engineering 17, pp. 465-467 (2004).
    46. F. M. G. Tack, S. P. Singh ,and M. G. Verloo, “Leaching behavior of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments”, Environmental pollution 106, pp. 107-114 (1999).
    47. M. N. Kuperman and H. E. Troiani, “Pore formation during Dezincification of Zn-based alloys”, Applied Surface Science 148, pp. 56-63 (1999).
    48. T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran ,and M. J. Chockalingam, “Galvanostatic deposition and characterization of cuprous oxide thin films”, Journal of Crystal Growth 216, pp. 304-310 (2000).
    49. J. Morales, P. Esparza, G. T. Fernandez, S. Gonzalez, J. E. Garcia, J. Caceres, R. C. Salvarezza ,and A. J. Arvia, “A comparative study on the passivation and localized corrosion of α- and β-brass in borate buffer solutions containing sodium chloride—II.”, Corrosion Science, Vol. 37. No. 2, pp. 231-239 (1995).
    50. R. Ravichandran and N. Rajendran, “Influence of benzotriazole derivatives on the dezincification of 65–35 brass in sodium chloride”, Applied Surface Science 239, pp. 182-192 (2005).
    51. R. Ravichandran, S. Nanjundan ,and N. Rajendran, “Effect of benzotriazole derivatives on the corrosion of brass in NaCl solutions”, Applied Surface Science 239, pp. 182-192 (2005).
    52. J. Y. Zou, D. H. Wang ,and W. C. Qin, “Solid-state diffusion during the selective dissolution of brass: chronoamperometry and positron annihilation study”, Electrochimica Acta, Vol. 42, No. 11, pp. 1733-1737 (1997).
    53. Corrosion of metals and alloys-Determination of dezincification resistance of brass International standard ISO 6509-1981(E)
    54. Dezincification resistance of copper alloys Australian Standard AS 2345-1992.
    55. H. H. Uhlig and R.W. Revie, “Corrosion and Corrosion control”, pp. P332-334.
    56. P. Spathis and I. Poulios, “The corrosion and photocorrosion of Zinc and Zinc oxide coating”, Corrosion Science, Vol. 37, No. 5, pp. 673-680 (1995).
    57. ASTM G54-84 (Reapproved 1991), “Standard Practice for Simple Static Oxidation Testing”, Annual Book of ASTM Standard, ASTM, Philiadelphia.
    58. ASTM G5-94 (Reapproved 1994), “Standard Reference Test Method for Marking Potentiostatic and Potentiodynamic Anodic Polarization Measurements”, Annual Book of ASTM Standard, ASTM, Philiadelphia.
    59. ASTM G102-89 (Reapproved 1994), “Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements”, Annual Book of ASTM Standard, ASTM, Philiadelphia.
    60. 姜晓霞,李诗卓,李曙,”金属的腐蚀磨损”,化学工业出版社(中華人民共和國.北京,2003),pp. 495。
    61. J. A. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders ,and S. B. Warner, “The Science and Design of Engineering Materials”, 2nd Ed., (M. H. Companies, Inc., USA, 1999), pp. 625.
    62. B. S. Phull, S. J. Pikul ,and R. M. Kain, “Seawater Corrosivity Around the World: Result from Five Years of Testing”, Corrosion Testing in Natural Water: second Volume, ASTM STP 1300 (1997).

    QR CODE