簡易檢索 / 詳目顯示

研究生: 林冠旭
Kuan-hsu Lin
論文名稱: 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測
Technology and Diagnostic of the Tumble Motion in the Internal Combustion Engine: Computational Simulation and PIV Measurements
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳明志
Ming-Jyh Chern
葉啟南
Chi-Nan Yeh
劉昌煥
Chang-Huan Liu
張家和
Chir-Ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 359
中文關鍵詞: 引擎移動網格計算模擬缸內滾轉運動
外文關鍵詞: es-ice, STAR-CD, tumble motion, engine
相關次數: 點閱:238下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內燃機的性能及污染物之生成取決於燃燒特性,為了增進其燃燒效果,降低污染物之排放,並進而提升整體性能輸出。因此利用增強缸內氣流滾轉運動的方式,以達成上述之目的,並同時增進稀薄燃燒之極限,使其進一步達到稀油燃燒,促使污染排放合乎環保標準,並保有原空燃比下之性能輸出。本研究透過改變進氣埠流道幾何形狀,以增進缸內氣流滾轉運動。研究過程中使用質點影像速度儀(particle image velocimetry, PIV) 並搭配商業套裝計算流體動力學(computational fluid dynamics, CFD)軟體STAR-CD,針對一部四閥單缸四行程引擎,於進氣埠流道形狀修改前後,進氣和壓縮行程期間,分析缸內氣流繞著缸徑軸上的滾轉(tumble)運動和繞著汽缸軸上的旋轉(swirl)運動。並藉由循環渦度滾轉比、循環渦度旋轉比及循環絕對紊流強度等量化指標,定量分析進氣埠流道幾何形狀修改前後的流場結構與引擎性能間的相關性。實驗與計算結果顯示,進氣埠流道形狀修改後之循環渦度滾轉比較修改前之進氣埠提升,代表缸內滾轉強度增強。搭配性能測試驗證後發現,滾轉運動的增強造成紊流強度的增加,有助於空氣和燃料均勻混合,並提升引擎性能,降低油耗與廢氣之產生。改變空燃比測試之結果顯示,修改後的缸頭可以更稀油燃燒,並保有原性能輸出,同時抑制汙染物之生成。透過計算與實驗結果的比較發現,計算所得到的整體趨勢與實驗相近,因此可利用計算模擬方法幫助車輛設計研發人員於引擎開發過程中更有效率。


    The in-cylinder flows in the axial and diametral planes of a motored four-valve, single-cylinder, four-stroke engine during the intake and compression strokes are diagnosed by using experimental and computational methods. Moderate and intense tumble motions are generated by changing the inlet port configuration. Experiments are carried out by the particle image velocimeter. The engine cylinder, piston, and accessories are modified to meet the requirements of laser-light sheet shooting and camera viewing when the particle image velocimeter is applied. Conditional sampling technique is employed to acquire the instantaneous velocity data at predetermined crank angles. Ensemble average of large amount of the instantaneous velocity maps obtained at various crank angles present clear pictures of the evolution processes of the tumble and swirl motions in the engine cylinder. Sectional streamlines and the velocity vectors show the topological flow structures. The computations are carried out by the fluid dynamic code STAR-CD. The ensemble averaged conservation equations for mass, momentum, and energy in transient state conditions with the turbulence model k-ε are solved. The grid, reproducing the geometry of the inlet port, exhaust port, combustion chamber, and real fluid system, is made by using es-ice module. The es-ice is designed to facilitate the moving grid, transient analyses of internal combustion engines and is used in conjunction with PROSTAR and STAR-CD. The boundary conditions prescribed to the computation domain are the same as the experimental ones. The inception, establishment, evolution, and destruction processes of the swirling and tumbling vortical structures during the intake and compression strokes are presented and discussed. Quantified strengths of the rotating motions in the axial and diametral planes are presented by dimensionless tumble and swirl ratios, which is defined as the ratio of the mean angular velocity of the vortices in the target plane at a certain crank angle divided by average crank angle velocity. The quantitative results of the cycle-averaged tumble number show that the modified of inlet port can induce large tumble motion and turbulence intensity. By comparing the quantified non-dimensional parameters of the in-cylinder flow motions with the engine performance, the correlation between the flow and the engine output is closely linked. It is found that the engine performance can be apparently increased and the pollutant emissions are drastically decreased when the tumble ratio is raised by the re-configured inlet-port geometry. The relation between the lean limit air-fuel ratio and the tumble intensity is also studied to seek for an indication of the combustion characteristics under part-load condition. The lean limit air-fuel ratio tends to increase toward lean side with higher tumble intensity. It is therefore desirable to increase the tumble intensity for lean burn engine. The CFD results qualitatively follow the measurements of experiments. However, the quantitative comparisons show large differences.

    摘要 i Abstract ii 誌謝 iv 目錄 v 符號索引 ix 表圖索引 xiv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的與方法 9 第二章 實驗設備、儀器與方法 10 2.1 實驗構想與方法 10 2.1.1 引擎改裝 10 2.1.2 引擎潤滑油路系統改裝 11 2.1.3 取像相位與座標定義 11 2.1.4 實驗引擎動力來源 13 2.1.5 質點選用 13 2.2 實驗設備 14 2.2.1 引擎型式與規格 14 2.2.2 進氣埠 14 2.2.3 傳動系統 15 2.2.4 引擎測試平台 15 2.2.5 編碼器 16 2.2.6 質點植入系統 16 2.3 實驗儀器 17 2.3.1 質點影像速度儀 17 2.4 物理參數定義 19 2.4.1 樣本平均 19 2.4.2 紊流強度 20 2.4.3 面平均紊流強度 21 2.4.4 循環紊流強度 22 2.4.5 滾轉比 23 2.4.6 旋轉比 23 2.4.7 流量係數 24 第三章 缸內氣流滾轉運動量測結果與討論 26 3.1 循環變異與樣本次數之分析 26 3.1.1 缸內流場結構與樣本平均次數之分析 26 3.1.2 缸內任一固定點的速度與樣本平均次數之分析 27 3.1.3 速度分量沿座標軸變化與樣本平均次數之分析 27 3.2 進氣埠流道形狀修改前之缸內氣流滾轉運動 28 3.2.1 流場結構與衍化過程 28 3.2.2 絕對紊流強度分佈與衍化過程 31 3.2.3 相對紊流強度分佈與衍化過程 33 3.3進氣埠流道形狀修改後之缸內氣流滾轉運動 36 3.3.1 流場結構與衍化過程 36 3.3.2 絕對紊流強度分佈與衍化過程 39 3.3.3 相對紊流強度分佈與衍化過程 41 3.4 量化分析 44 3.4.1 循環平均滾轉比 44 3.4.2 循環平均紊流強度 45 3.5 比較 46 第四章 缸內氣流旋轉運動量測結果與討論 47 4.1 自然進氣之缸內氣流旋轉運動 47 4.1.1 流場結構與衍化過程 47 4.1.1.1 取像截面Y=3.6 cm 47 4.1.1.2 取像截面Y=1.75 cm 50 4.1.2 絕對紊流強度分佈與衍化過程 53 4.1.2.1 取像截面Y=3.6 cm 53 4.1.2.2 取像截面Y=1.75 cm 55 4.1.3 相對紊流強度分佈與衍化過程 57 4.1.3.1 取像截面Y=3.6 cm 57 4.1.3.2 取像截面Y=1.75 cm 59 4.2 量化分析 61 4.2.1 循環平均旋轉比 61 4.2.2 循環平均紊流強度 62 第五章 引擎性能測試結果與討論 63 5.1 空燃比 63 5.2 容積效率 64 5.3 扭矩 65 5.4 制動馬力 66 5.5 制動馬力燃料消耗量 66 5.6 排放物 67 5.7 稀薄燃燒下之引擎性能測試 68 5.8 體積流率與流量係數 69 5.9 討論 70 第六章 計算模擬之模型與方法 71 6.1 計算流力軟體的簡介 71 6.2 統御方程式 73 6.2.1 紊流模式 74 6.3 數值方法 77 6.3.1 離散化方程式 77 6.3.2 PISO解法理論 79 6.3.3 收斂標準 84 6.4 數值模擬 85 6.4.1 計算網格 85 6.4.2 邊界條件與初始條件 87 6.4.3 計算模擬之無限大空間的選用 87 6.4.4 取像相位與座標定義 88 6.5 物理參數定義 88 6.5.1 滾轉比 88 第七章 缸內氣流滾轉運動計算結果與討論 90 7.1 進氣埠流道形狀修改前之缸內氣流滾轉運動 90 7.1.1 流場結構與衍化過程 90 7.1.1.1 取像截面於對稱面上 90 7.1.1.2 取像截面於Z = 1.18 cm 94 7.1.1.3 取像截面於Z = -1.18 cm 98 7.2 進氣埠流道形狀修改後之缸內氣流滾轉運動 102 7.2.1 流場結構與衍化過程 102 7.2.1.1 取像截面於對稱面上 102 7.2.1.2 取像截面於Z = 1.18 cm 106 7.2.1.3 取像截面於Z = -1.18 cm 110 7.3 量化分析 114 7.3.1 循環平均滾轉比 114 7.3.2 體平均循環平均滾轉比 116 7.4 比較 117 第八章 缸內氣流旋轉運動計算結果與討論 119 8.1 進氣埠流道形狀修改前之缸內氣流旋轉運動 119 8.1.1 流場結構與衍化過程 119 8.1.1.1 取像截面y = 5.03 cm 119 8.1.1.2 取像截面y = 4.03 cm 124 8.1.1.3 取像截面y = 3.18 cm 128 8.1.1.4 取像截面y = 2.03 cm 130 8.1.1.5 取像截面y = 1.03 cm 132 8.2 進氣埠流道形狀修改前之缸內氣流旋轉運動 133 8.2.1 流場結構與衍化過程 133 8.2.1.1 取像截面y = 5.03 cm 133 8.2.1.2 取像截面y = 4.03 cm 138 8.2.1.3 取像截面y = 3.18 cm 142 8.2.1.4 取像截面y = 2.03 cm 144 8.2.1.5 取像截面y = 1.03 cm 146 8.3 量化分析 147 8.3.1 循環平均旋轉比 147 8.3.2 體平均循環平均旋轉比 149 8.4 比較 149 第九章 計算與實驗結果之比較與討論 150 9.1 容積效率 150 9.2 速度向量與流線圖 151 9.3 速度分量 151 9.4 循環平均滾轉比 152 9.5 討論 152 第十章 結論與建議 154 10.1 結論 154 10.2 建議 156 參考文獻 157

    [1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
    [2] 李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
    [3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
    [4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines − The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, March 1987, pp. 3-35.
    [5] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge and London, 1972.
    [6] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, pp. 1081-1092, SAE 930821.
    [7] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, SAE Transactions-Section 3, Vol. 98, 1989, pp. 2042-203, SAE 892096.
    [8] Endres, H., Neuβer, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 101, 1992, pp. 942-953, SAE 920516.
    [9] Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 729-740, SAE 910477.
    [10] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979, pp. 383-400, SAE 790095.
    [11] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979. pp. 371-382, SAE 790094.
    [12] Liou, T. M. and Santavicca, D. A. “Cycle Resolved LDV Measurements in a Motored IC Engine,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 107, 1985, pp. 232-240.
    [13] Nadarajah, S., Balabani, S., Tindal, M. J., and Yianneskis, M., “The Effect of Swirl on the Annular Flow past an Axisymmetric Poppet Valve,” Proceedings of the Institution of Mechanical Engineers, part C, Vol. 212, No. 6, 1998, pp. 473-484.
    [14] Khaligi, B. and Huebler, M. S., “A Transient Water Analog of Dual Intake Valve Engine for Intake Flow Visualization and Full-Field Velocity Measurements,” Journal of Engines, SAE Transactions-Section 3, Vol. 97, 1988, pp. 6.877-6.891, SAE 880519.
    [15] Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine − Focus on Cycle-Resolved Turbulence,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 294-321, SAE 900056.
    [16] Arcoumanis, C., Hu, Z., Vafidis, C., and Whitelaw, J. H., “Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark- Ignition Engines,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 375-391, SAE 900060.
    [17] Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations -Flow Visualization and Particle Tracking Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 354-374, SAE 900059.
    [18] Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
    [19] Rönnbäck, M., Le W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 1824-1838, SAE 912376.
    [20] Adrian, R. J., “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
    [21] Choi, W. C. and Guezennec, Y. G., “Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2-D PIV and 3-D PTV,” Journal of Engines, SAE Transactions-Section 3, Vol. 108, 1999, pp. 1447-1459, SAE 1999-01-0957.
    [22] Lee, J. and Farrel, P. V., “Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, pp. 629-647, SAE 930480.
    [23] Valentino, G., Kaufman, D., and Farrel, P. V., “Intake Valve Flow Measurements Using PIV,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 102, 1993, pp. 1156-1175, SAE 932700.
    [24] Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a valve Seat and a Moving Piston,” Journal of Engines, SAE Transactions-Section 3, Vol. 105, 1996, pp. 1627-1639, SAE 9961195.
    [25] Jackson, N. S., Stokes, J., Sadler, M., Heikal, M. R., Faure, M., and Pommier, L., “Correlation of the Combustion Characteristics of Spark Ignition Engines with the In-Cylinder Flow Field Characterised Using PIV in a Water Analogy Rig,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, pp. 1-13, SAE 971637.
    [26] Freek, C., Hentschel, W., and Merzkich, W., “High Speed PIV − A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
    [27] Rouland, E., Floch, A., Ahmed, A., Dionnet, D., and Trinite, M., “Characterization of Intake Generated Tumble Flow in 4-Valve Engine Using Cross-Correlation Particle Image Velocimetry,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 195.1-195.15.
    [28] Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 108, 1999, pp. 1652-1663, SAE 1999-01-3540.
    [29] Reeves, M., Towers, D. P., Tavender, B., and Buckberry, C. H., “A High-Speed All-Digital Technique for Cycle-Resolved 2-D Flow Measurement and Flow Visualization within SI Engine Cylinders,” Optics and Lasers in Engineering, Vol. 31, October 1999, pp. 247-261.
    [30] Cao, Z.-M., Nishino, K., Mizuno, S., and Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids (Suppl.), 2000, S211-S219.
    [31] Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, SAE Transactions-Section 3, Vol. 111, 2002, pp. 1919-1929, SAE 2002-01-1120.
    [32] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
    [33] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
    [34] Huang, R. F., Huang, C. W., Chang, S. B., Yang, H. S., and Hsu, W. Y., “Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes,” Journal of Fluids and Structures, Vol. 20, January 2005, pp. 105-127.
    [35] Arcoumanis, C., Godwin, S. N., and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 107, 1998, pp. 1547-1562, SAE 981044.
    [36] Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., and Ando, H., “Development of Gasoline Direct Injection Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, pp. 777-793, SAE 970541.
    [37] Flagan, R. C. and Seinfied, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
    [38] Keane, R. D. and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, No. 3, July 1992, pp. 191-215.
    [39] Keane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measurements Science and Technology, Vol. 1, No. 11, November 1990, pp. 1202-1215.
    [40] Keane, R. D., Adrain, R. J., and Zhang, Y., “Super-Resolution Particle Imaging Velocimetry,” Measurements of Science and Technology, Vol. 6, No. 6, June 1995, pp. 754-768.
    [41] Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, No. 1, January 1999, pp. 1-10.
    [42] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, February 1981, pp. 240-242.
    [43] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
    [44] 楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
    [45] 林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。

    無法下載圖示 全文公開日期 2011/06/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE