研究生: |
陳筱婷 Shiao-ting Chen |
---|---|
論文名稱: |
透明顫菌血紅蛋白表現對木質醋酸菌生長及細菌纖維素生產之效應 Effect of Vitreoscilla hemoglobin expression on the growth of Acetobacter xylinum and its production of bacterial cellulose |
指導教授: |
李振綱
Cheng-Kang Lee |
口試委員: |
陳秀美
Hsiu-Mei Chen 陳志成 C -Will Chen |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 透明顫菌血紅蛋白 、木質醋酸菌 、細菌纖維素 |
外文關鍵詞: | Vitreoscilla hemoglobin, Acetobacter xylinum, bacterial cellulose |
相關次數: | 點閱:458 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究方向主要區分為兩大部分,第一部份主要是探討能提高菌體氧氣利用能力之透明顫菌血紅蛋白(Vitreoscilla hemoglobin;VHb)對木質醋酸菌 ( Acetobacter xylinum;A. xylinum)轉型株之影響。首先以pBBR122 載體進行A. xylinum電轉殖與化學轉殖之測試,結果電轉殖法有較高的轉殖效率。在轉殖方法成功建立後,我們將VHb基因轉殖入 A. xylinum 菌體中,並開始探討A. xylinum轉型株在充氧和微氧的條件下,菌體生長及生產細菌纖維素之研究。實驗結果顯示VHb基因表現可幫助 A. xylinum 菌體的生長,在充氧的條件下,含VHb基因表現的重組菌株比生長速率為宿主細胞的3倍;在微氧的條件下含VHb基因表現的重組菌株比生長速率則和宿主細胞相當。在探討細菌纖維素的研究方面,在充氧的條件下含VHb基因表現的重組菌株細菌纖維素的生產量為宿主細胞的2倍,在微氧的條件下含VHb基因表現的重組菌株細菌纖維素的生產量為宿主細胞的3倍。
第二部分研究是延續第一部分的結果以A. xylinum菌體為主軸,探討是否能夠藉由在A. xylinum中本身就有UDP-Glucose dehydrogenase (aceM) 和UDP-Glucose pyrophorylase (hasC),我們再將hyaluronic acid synthase (hasA)基因轉殖入 A. xylinum 菌體中,希望能夠利用A. xylinum合成透明質酸。結果顯示我們成功的將hyaluronic acid synthase (hasA)基因轉殖入 A. xylinum 菌體中進行表現,但是由於hyaluronic acid synthase(hasA)是膜蛋白,表現量相當的少,所以我們只針對透明質酸產量做初步檢測,結果發現利用 A. xylinum合成透明質酸是可行的。
Bacterial cellulose can be produced by Gram-negative bacterium,such as rod-shaped Acetobacter xylinum. As the organism is obligate aerobic, bacterial cellulose is always produced at the air/liquid interface. In a static culture, the oxygen supply is considered as the limiting factor for cell growth and cellulose production. Vitreoscilla, a strict aerobic bacterium, synthesizes bacterial hemoglobin (VHb) to survive and grow in an O2-poor environment.VHb plays the role in facilitating oxygen transfer to the respiratory chain in cell membrane. In this work, the constitutive bla-promoter was employed to drive the expression of VHb in cellulose producing bacteria, Acetobacter xylinum BCRC12334.The feasibilities of using bla-promoter in Acetobacter xylinum to drive expression of heterologous proteins as well as the function of expressed VHb to enhance the cell growth and cellulose productivity at microaerobic and anaerobic condition were studied. The results show that VHb did improve cellulose yield during the static flask cultivation at microaerobic and anaerobic condition. The growth rate of VHb expressing strain VHb+ was 3 fold higher than that of host strain at microaerobic condition. At anaerobic condition, the growth rate of VHb+ strain also similar to that of host strain. The amount of bacterial cellulose producted by VHb+ strain was 2 fold higher than that of host strain under the microaerobic condition. At anaerobic condition, the produced amount of bacterial cellulose by VHb+ strain was 3 fold of that produced by host strain.
戶田登也、桑名好惠、桐山修八。1994。ナタデココの新機能-血中コレステロール低下作用と應用開發食品と開發 29(3):353-362.
吳東和、林慶福。1994。“Nata— 被遺忘的機能性食品” 食品工業 26(6):42-47.
Alaban, C A. (1967) Studies on the optimum conditions for“ Nata de coco” bacterium or “Nata” formation in coconut water. Phil. Agric. 45 : 490-515
Angelis, P. L., Weigel, P. H.(1993) “Isolation of a Streptococcus pyogenes gene locus that directs hyalyronan biosynthesis in acapsular mutants and in heterologous bacteria ” J. biol. Chem. 268 : 14568- 14571
Annette M. G. , Kirstin J. E., Victor J. M., Michael J. G.(1997) “Genetic analysis of acetan biosynthesis in Acetobacter xylinum: DNA sequence analysis of the aceM gene encoding an UDP-glucose dehydrogenase” Biotechnol. lett, 19, 469–474
Ashbaugh, C. D., Sebastian, A. (1998) “Molecular analysis of the capsule gene region of group A Streptococcus : the hasAB genes are sufficient for capsule expression” J. Bacteriol., Sept : 4955-4959
Armstrong, D. L., Cooney, M. J., John, M. R.(1997) “Growth and amino acid requirements of hyaluronic acid-producting Strepococci” Appl. microbiol. Biotechnol.,47:309-312
Bailey, J. E., Khosla, C. (1988) “The Vitreoscilla hemoglobin gene : molecular cloning, nucleotide sequence and genetic expression in Escherichia coli” Mol. Genet., 214 : 158-161
Bailey, J. E., Khosla, C. (1989) “Characterization of oxygen-dependent promoter of the Vitreoscilla Hemoglobin gene in Escherichia coli” J. Bacterial., 171 : 5995-6004
Bailey, J. E., Kallio, P. T., Tsai, P. S. (1996) “Expression of Vitreoscilla hemoglobin is superior to horse heart myoglobin or yeast flavohemoglobin expression for enhancing Escherichia coli growth in a microaerobic bioreactor” Biotechnol. Prog., 12 : 751-757
Bailey, J. E., Lilius, G., Holmberg, N., Bülow, L. (1999) “The metabolic effects of native and transgenic hemoglobins on plants” Tibtech. January., 17 : 21-24
Balazs, E. A., Laurent, T. C., Jeanloz, R. W.(1986) “Nomenclature of hyaluronic acid” Biochem. J. 235 : 903
Banzon, J. A., Gonzalez, O.N., Dedeon, S. Y. and Sanchez, P. C. 1990. Chapter XIV Nata de coconut as food. In “Philippine coconut research and development foundation” Inc (PCRDF), Philippines.
Blackwell, J. 1982. The macromolecular organization of cellulose and chitin. In Brown, R. M., Jr. (ed.). “Cellulose and other nature polymer systems” Plenum Publishing Corp., New York. pp.327-329.
Cannon, R. E. and Anderson, S. M. 1991. “Biogenesis of bacterial cellulose ” Crit. Rev. Microbiol. 17: 415-447
Colquhoun, I. J., Defernez, M. and Morris, V. J. 1995. “NMR studies of acetan and the related bacterial polysaccharide, CR 1/4, produced by a mutant strain of Acetobacter xylinum ” Carbohydrate Research. 269:319-331.
DeAngelis, P. L., Weigel, P. H. (1994) “Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme” Biochemistry, 33(31): 9033-9039.
Dinene, L.C.r ,Ivo Van de Rijn (1995) “Hyaluronic acid synthesis operon (has) Expression in Group A Streptococci” J. biol. chem. 270 :18452-18458
Dougherty, B. A., Rijn, Ivo van de, (1992) “Molecular characterization of a locus required for hyaluronic acid capsule production in group A Streptococci” J. exp. Med 175 :1291-1299
Dougherty, B. A., Rijn, Ivo van de, (1994) “Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A Streptococci” J. biol. chem.269:169-175
Dougherty, B. A., Rijn, Ivo van de, (1993) “Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A Streptococci” J. biol. chem.268:7188-7124
Dougherty, B. A., Rijn, Ivo van de, (1995) “Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A Streptococci” J. biol. chem.270:28676-28680
Dudman, W. F. 1959 a. “Cellulose production by Acetobacter acetigenum in defined medium ” J. Gen. Microbiol. 21 : 312-326
Emubuscado, M. E., Marks, J. S. and Bemiller, J. N. 1994. “Bacterial cellulose. Ⅰ. Factors affection the production of cellulose by Acetobacter xylinum” Food Hydrocoll. 8 (5): 419-430
Fujiwara, M., Fukushi, K., Takai, M., Hayashi, J., Fukaya, M., Okumura, H. and Kawamura, Y. 1992. “Construction of shuttle vectors derived from Acetobacter xylinum for cellulose-producing bacterium Acetobacter xylinum ” Biotechology Letters 14(7): 539-542.
Haigler, C. H. 1985. “The functions and biogenesis of native cellulose, In R. P. Nevell and S. H. Zeronian (ed.), Cellulose chemistry and itsapplications ” Ellis Horwood Ltd., Chichester, England. p. 30-83.
Hall, P. E.anderson, S. M., Johnston, D. M. and Cannon, R. E. 1992. “Transformation of Acetobacter xylinum with plasmid DNA by electroporation ” Plasmid 28:194-200.
Hestrin, S. and Schramm, M. 1954. “Synthesis of cellulose by Acetobacter xylinum. Ⅱ. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose ” Biochem. J. 58 : 345-352
Kallio, P. T., Kim, D. J., Tasi, P. S., Vailey, J. E. (1994) “Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions” Eur. J. Biochem., 219 : 201-208
Kamide, K., Matsuda, Y.,Iijima, H. and Okajima, K. 1990. “Dffect of culture condition of acetic acid bacteria on cellulose biosynthesis ” Br. Polym. J. 22 : 167-171
Kent, R. A., Stephens, R. S. and Westland, T. A. 1991. “Bacterial cellulose fiber orovides an alternative for thickening and coating ” Food Technol. 45(6) : 108-118
Kozak, M. 1983. “Comparison of initiation of protein synthesis in prokaryotes, eucaryotes, and organelles ” Microbiol. Rev. 47:1-45.
Krieg, N. 1984. “Bergey’s Manual of Systematic Vacteriology Vol. 1 ”The Williams and Wilkins Co., Baltimore, MD. Pp. 267-274
Kumar P.K.R., Maschke H.E., Friehs K., Schugerl K.1991. “Strategies for improving plasmid stability in genetically modified bacteria in bioreactors ” Tibtech. 9:279-284
Lapuz, M. M., Gallardo, E. G. and Dalo, M. A. 1967. “The Nata organism-Cultural requirement, characteristics and identify ” Philip. J. Sci. 96(2) : 91-96
Masaoka, S., Ohe, T. and Sakota, N. 1993. “Production of cellulose form glucose by Acetobacter xylinum ” J. Fer. Bioeng. 75(1) : 18-22
Meyer, K. ,Weissmann, B.(1954) “The structure of hyaluronic acid and hyaluronic acid from umbilical cord. ” J. Am. Chem. Soc.; 76 :1753-1757
Nilsson, M., Kallio, P. T., Bailey, J. E., Bülow, L., Wahlund, K. G. (1999) “Expression of Vitreoscilla hemoglobin in Escherichia coli enhances ribosome and Trna levels : A flow field-flow fractionation study” Biotechnol. Prog., 15 : 158-163
Oikawa, T., Morino, T. and Ameyama, M. 1995 a. “Production of cellulose from D-Arabitol by Acetobacter xylinum Ku-1 Biosci ” Biotech. Biochem. 59(8) :1564-1565
Oikawa, T., Ohtori, T. and Ameyama, M. 1995 b. “Production of cellulose from E-Mannitol by Acetobacter xylinum Ku-1 Biosci ” Biotech. Biochem. 59(2) : 331-332
Okiyama, A., Motaki, M. and Yamanaka, S. 1992 a. “Bacterial cellulose Ⅱ. Processing of the gelatinous cellulose for food materials ” Food-Hydrocoll. 6 (5):479-487
Okiyama, A., Shirae, H., Kano, H. and Yamanaka, S. 1992. “Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter acet. ” Food-Hydrocoll. 6 (5):471-477.
Ramandeep, A., Wikstrom, M. (2001) “The heme groups of cytochrome o from Escherichia coli” Proc. Natl. Acad. Sci., 88 : 6122-6126
Ross, P., Mayer, R. and Benziman, M. 1991. “Cellulose biosynthesis and function in bacteria” Microbiol Rev. 55 (1) :35-58.
Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P.,Mayer, R., Braun, S., Vroom, E.d., Marel, G. A. v.d., Boom, J.H.v. and Benziman, M. 1987. “Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid ” Nature 325:279-281.
Saturnino-Dimaguila, L. A. 1967. “ The Nata de coco I. Characterization
and identity of the causal organism ” Phil. Agric. 51:462-474.
Shine, J. and Dalgarno, L., 1974. “The 3’-terminal sequence of Escherichia coli 16S ribosome RNA: complementarity to nonsense triplets and ribosome binding sites ” Proc. Natl. Acad. Sci. 71:1342-1346.
Sievers, M., Ludwig, W. and Teuber, M. 1994. “ Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodopila and Acidiphilium species as a branch of acidophilic bacteria in the a-subclass of Proteobacteria based on 16S ribosomal DNA sequences ” System. Appl. Microbiol. 17:189-196.
Stormo, G. D., Schneider, T. D. and Gold, L. M. 1982. “Characterization of translational initiation sites in Escherichia coli. Nucl. Acids ” Res. 10:2871-2996.
Takemura, H., Tsuchida, T., Yoshinaga, F., Matsushita, K. and Adachi, O. 1994. “ Prosthetic group of aldehyde dehydrogenase in acetic acid bacteria not pyrroloquinoline quinone. Biosci ” Biotech. Biochem. 58: 2082-2083.
Tarr, H L. A. and Hibbert, H. 1931. “Polysacharide synthesis by the action of Acetobacter xylinum on carbohydrates and related compounds ” Canad. J. Res. 4 : 372-388
Tonouchi, N., Tsuchida, T., Yoshinaga, F., Horinouchi, S. and Beppu, T., 1994. “A host-vector system system for a cellulose-producing Acetobacter strain ” Biosci. Biotech. Biochem. 58:1899-1901
.
Toyosaki, H. Nacitomi, T., Seto, A., Matsuoka, M., Tsuchida, T. and Yoshinaga, F. 1995. “Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem ” 59 (8) : 1498-1502
Valla, P. G. and Kiosbakken, J. 1982. “Cellulose-negative mutants of Acetobacter xylinum ” J. Gen. Microbiol. 128 : 1401-1408
Volpi, N, “Hyaluronic acid and chondroitin sulfate unsaturated disaccharides analysis by high-performance liquid chromatography and fluorimetric detection with dansylhydrazine ” J. Biol. Chem.,277 : 19-24
Webster, D. A., Hackett, D. P. (1966) “ The purification and Properties of cytochrome o from Vitreoscilla” J. Biol. Chem.,241 : 3308-3315
Webster, D. A., Wakabayashi, S., Mastubara, H. (1986) “Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla” Nature, 322 : 481-4823
Webster, D. A., Dikshit, K. L. (1988) “Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli” Gene, 70 : 377-386
Weinhouse, H., Sapir, S., Amikam, D., Shilo, Y., Volman, G., Ohana, P. and Benziman, M. 1997. “ C-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum ” FEBS Letters 416:207-211.
Williams, W. S. and Cannon, R. E. 1989. “Alternative environmental roles for cellulose produced by Acetobacter xylinum ” Appl. Environ. Microbiol. 55 (10):2448-2452
Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., Emerick, A. W., Bruner, R., Ben-Bassat, A. and Rony, T. 1990. “Genetic organization of the cellulose synthease operon in Acetobacter xylinum ” Proc. Natl. Acad. Sci. USA.87:8130-8134.
Yamada, Y., Hoshino, K. and Ishikawa, T. 1997. “The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level ”
Yamanaka, S., Watanabe, K. and Kitamura, N. 1989. “The structure and mechanical properties of sheets prepared from bacterial cellulose ” J. Mater. Sci. 24 : 3141-3145.