簡易檢索 / 詳目顯示

研究生: 陳玨宇
Jue-yu Chen
論文名稱: 馬克-詹德生醫感測干涉儀
Mach-Zehnder Interferometer for Biosensor
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張勝良
Sheng-Lyang Jang
李志堅
Chih-Chien Lee
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 馬克-詹德葡萄糖干涉生醫感測絕緣層上覆矽矽線波導
外文關鍵詞: Mach-Zehnder, glucose, interferometry, biosensor, SOI, silicon wire
相關次數: 點閱:268下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病是人類目前的重大疾病之一,在臺灣地區平均每一個小時就有一個人因糖尿病死亡,血糖感測是掌握糖尿病病情最重要的指標,正常人飯後兩小時的血糖應小於140 mg /dl,若大於200mg /dl則可判定為糖尿病,介於此範圍者則屬於高危險群。
    光波導除了應用在光通訊,過二十年多來在生醫感測的領域亦有蓬勃的發展,特點為高敏感度、高穩定性、反應迅速以及易於量產,其應用範圍包括醫藥、環境、食品、國防等。與目前市售血糖偵測器相比,矽線馬克-詹德干涉儀具有成本低廉、體積小、測試範圍大、不需使用試紙等優點,具有商業開發的潛力。
    本論文以絕緣層上覆矽(SOI)為基板,使用光學步進機(I-line stepper)作為曝光機台,製作出Mach-Zehnder結構的矽線波導,寬度為0.5μm,蝕刻深度0.26μm。Mach-Zehnder波導其中一路徑覆蓋二氧化矽與外界隔絕作為基準區;另一路徑則開有長1000至8000μm的空間可與糖水溶液接反應,作為感測區。由於糖水折射率與濃度成正相關,利用低同調干涉的原理架構,量測上下兩路徑干涉圖形封包的極值間距,便可推算其濃度變化。
    由於光功率對濃度變化的改變量為一餘弦函數,若元件設計不佳將會使得量測結果不為一對一函數,使量測結果失去正確性,使用低同調干涉的量測方法將可避免此情形發生。
    本實驗以0%、5%、10%、20%的糖水為樣本,成功量測其相位變化,敏感度為0.002963μm/RIU。感測極限目前為 ,若使用光學尺或光學編碼器,解析度將可達到 ,理想上系統的最低解析度為 ,可以偵測4.55mg/dl的變化量,將可有效應用於糖尿病的診斷。


    In Taiwan, one person passed away per hour from diabetes, which is a serious disease for human beings. Blood glucose concentration measuring is the way to tell if one have pre-diabetes or diabetes. A normal glucose level is 110 milligrams per deciliter (mg/dl) or below, a diabetic level is 126 mg/dl or higher, and a pre-diabetes level is between 110 mg/d land 125mg/dl.
    Optical waveguide can be used not only in optical communications, but also in biosensing in the healthcare, environmental pollution, food, and military defense for over twenty years due to its characteristics of high sensitivity, stability, quick reaction and mass production. The extension of application includes Compared with current diabetes sensing products, the superior parts of silicon-wire Mach-Zehnder interferometer are low cost, small foot print, wider sensing region, and test paper needless, thus with the potential for commercial product applications.
    In this article, we utilized the silicon-on-insulator (SOI) as a substrate, and I-line stepper for lithography, to fabricate silicon wire Mach-Zehnder interferometer with the width of 0.5μm and etching depth of 0.26μm. One arm of the interferometer is cladded with TEOS oxide and is thus isolated from the sugar solution, while the other is exposed to the sugar solution. The sensing length is from1000 to 8000μm. Since the refractive index of sugar solution is proportional to its concentration, we could use the low-coherence interferometer to measure the distance between different interferograms, thus to derive the concentration difference.
    We successfully characterized the phase differences between 0%, 5%, 10%, and 20% sugar solutions, the sensitivity is 0.002963μm/RIU, and detection limit is . It can be lowered to if the optical encoder is implemented. Ideally the limit is for the system and is equal to 8.4mg/dl sugar concentration variation. This approach can effectively be utilized in diabetes differentiation.

    目錄 第一章 緒論 1 1.1 前言 1 1.2 糖尿病簡介 3 1.3 矽線波導簡介 5 1.4 文獻回顧 6 第二章 光波導理論 12 2.1 Mach-Zehnder biosensor理論 12 2.2 Mach-Zehnder量測理論與實驗架構 14 2.3 靈敏度與感測極限 16 第三章 矽線波導模擬 19 3.1 矽線波導的單多模條件 19 3.2 糖水濃度與折射率的關係 21 3.3 分光比與相位變化的研究 24 3.4 多模干涉器簡介與模擬 25 第四章 光波導製程 28 4.1 SOI晶圓介紹 28 4.2 Mach-Zehnder生醫感測器的製作流程 31 第五章 光波導量測結果 43 5.1實驗結果 43 5.2靈敏度與感測極限的計算 45 第六章 結論與未來展望 47 6.1 總結 47 6.2 未來展望 48

    [1]Alice Harper and Mark R.Anderson, Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction
    [2]陳詩喆 電流式葡萄糖生物感測器之製備及測試
    [3]王少君 科學發展 2007年12月 420期
    [4] Y.Liu, P.Hering, An Integrated Optical Sensor for measuring glucose concentration
    [5] F Prieto, B Sepulveda, An integrated optical interferometric nanodevice based on silicon technology for biosensor applications
    [6] Jongin Hong, Jung Sung ChoiA Mach-Zehnder interferometer based on silicon oxides for biosensor applications
    [7]A.Densmore, A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor
    [8]A.Densmore, Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection
    [9] A.Yariv, P.Yeh ,Photonics, optical electronics in modern communications
    [10] R.G. Heideman, P.V.Lambeck, Remote opto-chemical sensing with extreme sensitivity design fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system
    [11] 曾聖傑 絕緣層上覆矽光波導色散與雙折射效應之研究
    [12] R.Ince, R.Narayanaswamy, Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors
    [13] 林奕良 矽線波導耦光效率之研究
    [14] Hui Su, Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions
    [15] Vittorio M.N.Passaro , Guided-wave optical sensors
    [16]半導體製程概論 施敏 梅凱瑞 原著 林鴻志翻譯
    [17] 國家奈米元件實驗室

    無法下載圖示 全文公開日期 2016/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE