簡易檢索 / 詳目顯示

研究生: 劉凱崴
Kai-Wei Liu
論文名稱: 運用變壓器繞線張力於阻抗電壓之智慧預測系統研製
Development of an Intelligent Prediction System for Impedance Voltage Using Transformer Winding Tension
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 郭政謙
張宏展
陳鴻誠
黃維澤
張建國
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 62
中文關鍵詞: 變壓器繞線張力阻抗電壓機器學習深度學習MLRANN1D-CNN
外文關鍵詞: Transformer, Winding Tension Values, Impedance Voltage, Machine Learning, Deep Learning, MLR, ANN, 1D-CNN
相關次數: 點閱:509下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球科技進步和能源轉型的持續推進,變壓器是現今能源系統中的關鍵角色之一,特別是城市化和基礎設施擴張以及再生能源裝機增加,都使得變壓器市場需求不斷增長,為了擴大產能、提高生產效率和降低成本,製造變壓器的傳統工廠勢必需要智慧化轉型。而人工智慧(Artificial Intelligence, AI)也已經成為當今工業生產中不可或缺的關鍵技術,在人工智慧的各個分支中,機器學習(Machine Learning, ML)更為重要,它可以透過演算法對收集到的數據進行分類、預測和模型訓練,在多個方面對生產流程進行優化,從而提高生產連續性和效率還能有效降低整體運營成本。
      本論文以某工廠在進行變壓器製程為例,用繞線時所收集的張力值數據進行分析與處理,在假設變壓器結構、材料、製造方式都一樣的條件下,分析張力值對阻抗電壓的影響關係,並且在數據量少和特徵不明顯的情況中導入預測模型,利用機器學習中的多元線性迴歸(Multiple Linear Regression, MLR),以及深度學習中的人工神經網路(Artificial Neural Network, ANN)、一維卷積神經網路(1D-Convolutional Neural Network, 1D-CNN),比較各模型在此研究中的表現,再藉由表現最好的模型建置預測系統,將有助於減少不良品的發生,同時降低生產成本並提升生產效率之目的。


    With the global advancement of technology and energy transition, transformers are critical in today's energy systems. The rising demand due to urbanization, infrastructure expansion, and renewable energy growth necessitates the intelligent transformation of traditional transformer manufacturing plants to increase capacity, efficiency, and cost-effectiveness. Artificial Intelligence (AI), especially Machine Learning (ML), plays a key role by optimizing production processes through data classification, prediction, and model training.
      This thesis uses data collected from the winding tension values during the manufacturing process of distribution transformers in a specific factory as an example. Assuming the same transformer architecture, materials, and manufacturing methods, the relationship between tension values and impedance voltage is analyzed. In situations with limited data and unclear features, predictive models are introduced. The study employs Multiple Linear Regression (MLR) from machine learning and Artificial Neural Networks (ANN) and 1D-Convolutional Neural Networks (1D-CNN) from deep learning to compare the performance of each model in this research. The best-performing model is then used to build a predictive system, which will help reduce defects and rework, lower production costs, and improve production efficiency.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 變壓器全球市場發展現狀 2 1.2.2 繞線機張力控制之影響 3 1.2.3 預測模型 3 1.3 研究方法 5 1.4 章節概述 7 第二章 儀器與變壓器介紹 8 2.1 前言 8 2.2 儀器介紹 8 2.2.1 繞線機組 8 2.2.2 張力控制系統 9 2.3 張力 10 2.4 變壓器介紹 11 2.4.1 變壓器基本原理與結構 11 2.4.2 變壓器種類 13 2.4.3 變壓器製造流程概述 17 2.5 繞線張力對變壓器阻抗電壓之影響 19 第三章 預測模型介紹 20 3.1 前言 20 3.2 機器學習與深度學習的介紹 20 3.2.1 學習方式 21 3.2.2 正規化(Normalization) 22 3.2.3 優化器(Optimizer) 23 3.2.4 激活函數(Activation Function) 23 3.2.5 損失函數(Loss Function) 26 3.3 多元線性迴歸(MLR) 28 3.3.1 多元線性迴歸簡介 28 3.3.2 多元線性迴歸原理 28 3.4 人工神經網路 (ANN) 29 3.4.1 人工神經網路簡介 29 3.4.2 人工神經網路架構 30 3.5 一維卷積神經網路 (1D-CNN) 32 3.5.1 一維卷積神經網路介紹 32 3.5.2 一維卷積神經網路架構 32 第四章 數據集與特徵前處理 35 4.1 前言 35 4.2 數據集處理 35 4.2.1 原始數據集 35 4.2.2 數據篩選 41 4.2.3 時間過濾 42 4.2.4 數據清理 43 4.3 特徵處理 44 4.4 模型訓練規劃 46 第五章 訓練結果分析與預測系統建置 47 5.1 前言 47 5.2 MLR模型訓練 47 5.3 ANN模型訓練 50 5.4 1D-CNN模型訓練 52 5.5 預測系統 55 第六章 結論與未來研究方向 58 6.1 結論 58 6.2 未來研究方向 59 參考文獻 61

    [1] F. T. Y. Wang, Y. Zuo, M. Zhang, Q. Qi, "Digital-Twin-Enhanced Quality Prediction for the Composite Materials," Engineering pp. pp. 23-33, 22 (2023).
    [2] C.-H. Lee, C.-L. Liu, A. J. C. Trappey, J. P. T. Mo, and K. C. Desouza, "Understanding digital transformation in advanced manufacturing and engineering: A bibliometric analysis, topic modeling and research trend discovery," Advanced Engineering Informatics, vol. 50, p. 101428, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.aei.2021.101428.
    [3] M. I. S. P. Ltd, Global Power Transformer Market Size, Share & Industry Trends Analysis Report By Insulation, By Application, By Rating, By Phase, By Core, By Regional Outlook and Forecast, 2022 - 2028. February 2023.
    [4] 任浩楠, 「变压器绕线机张力控制系统的设计与研究」, 哈尔滨理工大学硕士学位论文, 2021年6月.
    [5] R. Bevans. "Multiple Linear Regression | A Quick Guide (Examples)." https://www.scribbr.com/statistics/multiple-linear-regression/ (accessed.
    [6] D. O’Leary and J. Kubby, "Feature Selection and ANN Solar Power Prediction," Journal of Renewable Energy, vol. 2017, p. 2437387, 2017/11/08 2017, doi: 10.1155/2017/2437387.
    [7] X. Yang, Y. Ye, X. Li, R. Lau, X. Zhang, and X. Huang, "Hyperspectral Image Classification With Deep Learning Models," IEEE Transactions on Geoscience and Remote Sensing, vol. PP, pp. 1-16, 04/17 2018, doi: 10.1109/TGRS.2018.2815613.
    [8] H. C. J. e. al., "Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy," Journal of IKEEE, vol. vol. 23, no. 1, pp. pp. 134–142, Mar. 2019.
    [9] S. W. T. P. Limited. https://www.synthesiswinding.com/ (accessed.
    [10] 運泰電機有限公司. https://www.euntay.com.tw/motion-control_system00.html#a (accessed.
    [11] 紹凱動能科技股份有限公司, "產品介紹." [Online]. Available: http://www.sktc-tech.com.tw/.
    [12] 上海今景电气科技发展有限公司. "变压器绕线机适用线径与安全张力." https://bbs.co188.com/thread-1417520-1-1.html (accessed.
    [13] A. Semiconductor. "Transformer vs Converter vs Inverter: What are Differences." https://avaqsemi.medium.com/transformer-vs-converter-vs-inverter-what-are-differences-d09d0bc83fe1 (accessed.
    [14] 明明科技論. "一文介紹變壓器器身結構(鐵心、繞組、引線篇)." https://read01.com/Nok83e0.html (accessed.
    [15] E. F. M. W. LLC. "Formvar – AL." https://essexfurukawa.com/products/formvar-al/ (accessed.
    [16] 華城電機股份有限公司. https://www.fortune.com.tw/tw/ (accessed.
    [17] 三江電機企業股份有限公司. https://www.sanjiang-electric.com/ (accessed.
    [18] 士林電機廠股份有限公司. https://www.seec.com.tw/index.aspx?SiteID=10 (accessed.
    [19] S. Wang, S. Wang, N. Zhang, D. Yuan, and H. Qiu, "Calculation and Analysis of Mechanical Characteristics of Transformer Windings Under Short-Circuit Condition," IEEE Transactions on Magnetics, vol. 55, no. 7, pp. 1-4, 2019, doi: 10.1109/TMAG.2019.2898183.
    [20] W. W. Shao, L. J. Chen, C. L. Pan, Y. B. Liu, and Z. H. Feng, "Power density of piezoelectric transformers improved using a contact heat transfer structure," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 1, pp. 73-81, 2012, doi: 10.1109/TUFFC.2012.2157.
    [21] KevinLuo. "深度學習-各種新優化器介紹-LookAhead&Ranger&LARS." https://kilong31442.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E5%90%84%E7%A8%AE%E6%96%B0%E5%84%AA%E5%8C%96%E5%99%A8%E4%BB%8B%E7%B4%B9-lookahead-ranger-lars-830ca2250dd5 (accessed.
    [22] D. J. Santry, "Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks," 2023-12-12.
    [23] X. Chen, F. Kopsaftopoulos, Q. Wu, H. Ren, and F.-K. Chang, "A Self-Adaptive 1D Convolutional Neural Network for Flight-State Identification," Sensors, vol. 19, no. 2, doi: 10.3390/s19020275.
    [24] S. Hansun, "A new approach of moving average method in time series analysis," in 2013 Conference on New Media Studies (CoNMedia), 27-28 Nov. 2013, pp. 1-4, doi: 10.1109/CoNMedia.2013.6708545.

    無法下載圖示
    全文公開日期 2026/07/17 (校外網路)
    全文公開日期 2026/07/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE