簡易檢索 / 詳目顯示

研究生: 林煒翔
Wei-Siang Lin
論文名稱: 常壓電漿製程用於封裝裸銅板低溫還原技術之研究
Study on Atmospheric Pressure Plasma Process for Low Temperature Reduction on Bare copper in Packaging
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 黃駿
Jun Huang
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 109
中文關鍵詞: 常壓電漿噴射束裸銅板氧化還原
外文關鍵詞: Atmospheric pressure plasma jet, Bare Copper, Reduction-oxidation reaction
相關次數: 點閱:371下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應科技迅速變遷,半導體的產業如今在全球各地蓬勃發展。印刷電路板是用來固定IC和其他電子元件的重要基板,讓不同功能的IC和電子元件藉由一條條的導線連接起來,藉此達到處理電子信號的功能。同時底部的銅基地或是鎳基地的基板容易氧化的影響。大氣電漿技術近年來由於不須使用真空腔體還有可以進行連續性的製程,在產業上有使用的趨勢,同時通入不同的工作氣體能對表面進行不同的處理。
    本研究利用常壓電漿噴射束,對裸銅板的表面氧化銅進行還原,評估其還原效應的效果以及是否能有效增加銲接接合的強度。研究先使用熱重分析儀分析氧化銅的裂解溫度,比較和大氣電漿不同工作距離(3mm、4mm、5mm)。工作氣體氬氣混入不同氫氣比例(1%、2%)的變化下,還原溫度的差異。並利用光學發射光譜儀對於大氣電漿的物種進行探討。
    實驗結果顯示,裸銅板在常壓電漿噴射束的處理下,水接觸角都能得到有效的提升,二碘甲烷的角度沒有太大差異,表示物理結構並沒有太大的改變。從光學發射光譜儀中的電漿物種分析可以得知電漿裡面含有氫有利於還原的物種Hα。擴散角的量測表示了大氣電漿對於表面的銲接接合力能有效地提升。四點探針量測薄膜電阻的表面受到電漿處理後,表面電阻率下降,氧化物成功還原。使用X光光電子能譜儀對表面進行分析,XPS圖譜中可以看到Cu2p裡面的的銅金屬下降,氧化銅成功利用大氣電漿還原,Cu LMM的圖譜可以了解Cu2O和Cu在還原後同時存在。銲接的接合強度得到提升,並且在高溫爐的烘烤後仍保持一定的強度,斷裂面呈現延性的情況。使用熱燈絲式電子顯微鏡觀察介金屬化合物在裸銅板和無鉛銲料錫球之間的反應情況。進一步探討不同幾何形狀的噴頭對於表面處理效果,還有無助銲劑製程的可行性實驗。


    In this generation, technology has been changing all of our life. The industry of semiconductor widely develop around the world. Printed circuit board is used to fix the ICs and electronic components. Connecting the components by wire is the method to process electronic signals. Cu-based and Ni-based substrates are easily oxidized in our environment. No needed of vacuum cavity and proceeded consistent treatment are the major advantages of atmospheric pressure plasma (APP). By injecting different working gas, the substrate can do different surface treatment and the equipment of APP is a new trend in industry.
    In this study, we are using atmospheric pressure plasma jet (APPJ) to remove the oxidized layer on bare Cu. Evaluating the effect of reduction and the bonding between lead free solder ball and substrate are discussed. In the beginning of this experiment, we used thermos gravimetric analyzer to observe the reduction temperature of CuO. The above result is compared the plasma temperature of working distance 3, 4, and 5 mm. By adjusting the different concentration of H2 of 1% and 2% and using optical emission spectroscopy (OES), evaluating the different reduction temperature and detecting the species of APP are discussed.
    The results show the surface becomes hydrophilic. On the other hand, CH2l2 contact angle remains similar contact angle after treatment. This results show the physic structure does not change by APPJ. From OES inspection, H radicals are tested and they are benefit to remove the oxidation. Spreading ratio shows the improvement of bonding between solder ball and bare Cu. Conductivity is tested by four-point probe shows lower number after treatment, which means the oxidize layer is removed by plasma. X-ray photoelectron spectroscopy shows Cu2p of metal oxidize becomes lower. Cu LMM spectrum shows Cu2O and Cu are coexisting. Shear test proves to increase the bonding of soldering. Even after high temperature storage, the shear remain certain strength. The fracture surface performs ductility. Intermetallic compound reaction between bare Cu and solder ball is observed by scanning electron microscope. Furthermore, different geometric shape of plasma head and the feasibility of flux free solder are explored.

    目錄 摘要 I Abstract II 致謝 IIV 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 常壓大氣電漿技術 3 1.3 銅元素 4 1.4 研究動機 5 第二章 文獻回顧與探討 6 2.1 電子構裝技術簡介 6 2.2 無鉛銲料使用之原因 10 2.3 無鉛銲料簡介 11 2.3.1 無鉛銲料的特性 11 2.3.2 純錫無鉛銲料 13 2.3.3 錫-銀-銅合金 14 2.4 銲接 15 2.4.1 銲接潤濕現象 16 2.4.2 銲點機械強度 17 2.4.3 助銲劑 18 2.5 電路板表面處理方式 19 2.5.1 裸銅板 (Bare copper) 20 2.5.2 有機保焊膜 (Organic solderability preservative, OSP) 20 2.5.3 噴錫板 (Hot air solder leveling ) 21 2.5.4 化金板 (Electroless nickel immersion gold) 21 2.6 界面反應 22 2.7 電漿簡介 24 2.7.1 電漿的原理和反應機制 27 2.7.2 電漿分類 31 2.7.3 常壓電漿的應用 36 2.8 銅材料的表面處理 40 2.8.1 甲酸蒸氣以及溶液進行銅層表面進行還原 40 2.8.2 以有機酸氣氛進行銅表面改質之研究 41 第三章 研究方法及儀器設備 42 3.1 研究架構 42 3.2 實驗材料及設備 44 3.3 實驗儀器與材料分析設備 48 3.3.1 光學發射光譜儀(Optical Emission Spectroscopy, OES) 48 3.3.2 水接觸角量測儀器 49 3.3.3 光學顯微鏡(Optical Microscope, OM) 50 3.3.4 熱燈絲式電子顯微鏡(Scanning Electron Microscopy, SEM) 51 3.3.5 微接點推拉力機 52 3.3.6 四點探針(Four point prone) 54 3.3.7 熱重分析儀器(Thermogravimetric Analyer) 55 3.3.8 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 56 第四章 結果與討論 57 4.1 氧化銅的材料特性分析 57 4.2 常壓電漿溫度之分析 59 4.3 常壓電漿電漿噴射束物種分析 62 4.4 接觸角之量測 66 4.5 擴散角之量測 68 4.6 四點探針量測薄膜電阻 70 4.7 X光光電子能譜儀分析 73 4.8 錫球封裝後剪應力破壞測試 76 4.9 封裝接合後其介金屬之探討 80 4.10 常壓大氣電漿應用在氧化銅還原機制探討 82 4.11 固定及長噴頭大氣電漿的處理 84 4.12 無助銲劑製程 85 第五章 結論與未來展望 86 5.1 研究結論 86 5.2 未來展望 88 參考文獻 89

    參考文獻
    [1] E. Mollick, "Establishing Moore's law," IEEE Annals of the History of Computing, vol. 28, no. 3, pp. 62-75, (2006).
    [2] 顧正書."Intel vs. TSMC:摩爾定律和摩爾第二定律對決". https://www.getit01.com/p2018020322296736/, (2005).
    [3] R. R. Tummala, "Fundamentals of microsystems packaging," (2001).
    [4] 工作熊."電路板表面處理的目的?整理幾種常見PCB finish的優缺點". https://www.researchmfg.com/2013/04/pcb-finish/, (2013).
    [5] J. R. Davis, "Copper and copper alloys," (2001).
    [6] S. Poulston, R. A. Bennett, A. H. Jones, M. Bowker, "STM study of formic acid adsorption on Cu (110)," Physical Review B, vol. 55, no. 19, p. 12888, (1997).
    [7] H. Nakatsuji, M. Yoshimoto, M. Hada, K. Domen, C. Hirose, "Theoretical study on the chemisorption and the surface reaction of HCOOH on a MgO (001) surface," Surface science, vol. 336, no. 1-2, pp. 232-244, (1995).
    [8] K. Ishikawa, T. Yagishita, M. Nakamura, "Vapor treatment of copper surface using organic acids," MRS Online Proceedings Library Archive, vol. 766, (2003).
    [9] M. Bowker et al., "A combined STM/molecular beam study of formic acid oxidation on Cu (110)," Journal of Molecular Catalysis A: Chemical, vol. 131, no. 1-3, pp. 185-197, (1998).
    [10] W. Yang, C. Zhou, J. Zhou, Y. Lu, Y. Lu, T. Suga, "Cu film surface reduction through formic acid vapor/solution for 3-D interconnection," 2018 19th International Conference on Electronic Packaging Technology (ICEPT), pp. 1378-1381, (2018).
    [11] R. R. Tummala, E. J. Rymaszewski, A. G. Klopfenstein, "Microelectronics packaging handbook: technology drivers," (2012).
    [12] 陳力俊, 「微電子材料與製程」, 中國材料科學學會, (2000).
    [13] J. Farkas et al., "Novel Characterization of Inlaid Metal CMP Processes," The Electrochemical Society, (1997).
    [14] C. Wu, D. Q. Yu, C. Law, L. Wang, "Properties of lead-free solder alloys with rare earth element additions," Materials Science and Engineering: R: Reports, vol. 44, no. 1, pp. 1-44, (2004).
    [15] K. Suganuma, "Advances in lead-free electronics soldering," Current Opinion in Solid State and Materials Science, vol. 5, no. 1, pp. 55-64, (2001).
    [16] J. H. Pang, B. Xiong, T. Low, "Low cycle fatigue models for lead-free solders," Thin solid films, vol. 462, pp. 408-412, (2004).
    [17] I. Karakaya, W. Thompson, "The Pb− Sn (Lead-Tin) system," Journal of Phase Equilibria, vol. 9, no. 2, pp. 144-152, (1988).
    [18] S. Choi, J. Lee, F. Guo, T. Bieler, K. Subramanian, J. Lucas, "Creep properties of Sn-Ag solder joints containing intermetallic particles," JOM, vol. 53, no. 6, pp. 22-26, (2001).
    [19] J.-W. Yoon, B.-I. Noh, B.-K. Kim, C.-C. Shur, S.-B. Jung, "Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints," Journal of alloys and compounds, vol. 486, no. 1-2, pp. 142-147, (2009).
    [20] S. Darwish, S. Al-Habdan, A. Al-Tamimi, "A knowledge-base for electronics soldering," Journal of Materials Processing Technology, vol. 97, no. 1-3, pp. 1-9, (2000).
    [21] M. M. Aguila, R. C. Felipe, A. F. Velarde, J. Edpan, "Ball bond characterization: An intensive analysis on ball size and shear test results and applicability to existing standards," Proceedings of the 1997 1st Electronic Packaging Technology Conference (Cat. No. 97TH8307), pp. 46-51, (1997).
    [22] P. Burge, M. Harries, I. O'brien, J. Pepys, "Bronchial provocation studies in workers exposed to the fumes of electronic soldering fluxes," Clinical & Experimental Allergy, vol. 10, no. 2, pp. 137-149, (1980).
    [23] X. Hu, Y. Li, Z. Min, "Interfacial reaction and IMC growth between Bi-containing Sn0. 7Cu solders and Cu substrate during soldering and aging," Journal of alloys and compounds, vol. 582, pp. 341-347, (2014).
    [24] A. Hayashi, C. Kao, Y. Chang, "Reactions of solid copper with pure liquid tin and liquid tin saturated with copper," Scripta materialia, vol. 37, no. 4, pp. 393-398, (1997).
    [25] 工作熊."何謂IMC (Intermetallic Compound)?IMC與PCB銲接強度有何關係?". https://www.researchmfg.com/2014/03/soldering-strength-imc/, (2014).
    [26] D. Yan, J. H. Sherman, M. Keidar, "Cold atmospheric plasma, a novel promising anti-cancer treatment modality," Oncotarget, vol. 8, no. 9, p. 15977, (2017).
    [27] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, (1998).
    [28] 郭福升, 「大面積常壓電漿技術之研究」, 化學系, 國立成功大學, (2003).
    [29] Z. Rahman, H. Rahman, A. Rahman, "Classification and generation of atmospheric pressure plasma and its principle applications," Int. J. Math. Phys. Sci. Res, vol. 2, pp. 127-146, (2014).
    [30] T.-Y. Wu, C.-R. Chang, T.-J. Chang, Y.-J. Chang, Y. Liew, C.-F. Chau, "Changes in physicochemical properties of corn starch upon modifications by atmospheric pressure plasma jet," Food chemistry, vol. 283, pp. 46-51, (2019).
    [31] S. Zhang, A. Rousseau, T. Dufour, "Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer," RSC advances, vol. 7, no. 50, pp. 31244-31251, (2017).
    [32] M. E. Sener, S. Sathasivam, R. Palgrave, R. Q. Cabrera, D. J. Caruana, "Patterning of metal oxide thin films using a H 2/He atmospheric pressure plasma jet," Green Chemistry, vol. 22, no. 4, pp. 1406-1413, (2020).
    [33] K. Anak Agung Sagung Dewi Afiati, 「常壓電漿系統驅動金屬氧化物成形之研究」, 機械工程系, 國立臺灣科技大學, (2019).
    [34] S. Kagata, T. Nakashima, A. Izumi, "Reduction of the Oxide Layer on a Lead-Free Solder Material by Hydrogen Radicals," Transactions of The Japan Institute of Electronics Packaging, vol. 2, no. 1, pp. 1-4, (2009).
    [35] N. Nakashima, M. Shibata, T. Takamatsu, R. Sasaki, H. Miyahara, A. Okino, "High-Speed Reduction of Oxide Film and Surface Hydrophilization using Atmospheric Multi-Gas Plasma Jet," ESCAMPIG XXI, vol. 4, (2012).
    [36] 張智勛, 「以有機氣氛進行銅表面改質與金屬直接接合低溫技術開發」, 材料科學與工程學系, 國立東華大學, (2012).
    [37] W. Boyle, P. Kisliuk, "Departure from Paschen's law of breakdown in gases," Physical Review, vol. 97, no. 2, p. 255, (1955).
    [38] 鍾宛庭, 「電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理」, 機械工程系, 國立臺灣科技大學, (2019).
    [39] D. Y. Kwok, A. W. Neumann, "Contact angle measurement and contact angle interpretation," Advances in colloid and interface science, vol. 81, no. 3, pp. 167-249, (1999).
    [40] 王憲柏, 「以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究」, 機械工程系, 國立臺灣科技大學, (2018).
    [41] 黃薇臻, 「以常壓電漿噴束製備海水摻雜改質氧化鐵/氧化鋁載氧體運用於化學迴路燃燒程序之研究」, 機械工程系, 國立臺灣科技大學, (2017).
    [42] I. Denysenko, S. Xu, J. Long, P. Rutkevych, N. Azarenkov, K. Ostrikov, "Inductively coupled Ar/CH 4/H 2 plasmas for low-temperature deposition of ordered carbon nanostructures," Journal of applied physics, vol. 95, no. 5, pp. 2713-2724, (2004).
    [43] M. L. Steen, A. C. Jordan, E. R. Fisher, "Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment," Journal of Membrane Science, vol. 204, no. 1-2, pp. 341-357, (2002).
    [44] D. Janssen, R. De Palma, S. Verlaak, P. Heremans, W. Dehaen, "Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide," Thin Solid Films, vol. 515, no. 4, pp. 1433-1438, (2006).
    [45] T. Binder, E. Brandt, T. Horgen, G. Zack, "Staging events of collaborative design and learning," 5th International Conference on Concurrent Engineering, (1998).
    [46] M.-S. Liu, M. C.-C. Lin, C. Tsai, C.-C. Wang, "Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method," International Journal of Heat and Mass Transfer, vol. 49, no. 17-18, pp. 3028-3033, (2006).
    [47] C. Lee, G. Chen, Y.-L. Kuo, M.-J. Wang, K.-L. Liu, "An electro-enhanced metalorganic chemical vapor deposition technique for producing thin copper films with (hfac) CuI (COD) as a precursor," Microelectronic Engineering, vol. 86, no. 1, pp. 47-54, (2009).
    [48] H.-H. Lee, C. Lee, Y.-L. Kuo, Y.-W. Yen, "A novel two-step MOCVD for producing thin copper films with a mixture of ethyl alcohol and water as the additive," Thin Solid Films, vol. 498, no. 1-2, pp. 43-49, (2006).
    [49] Y.-L. Shen, N. Chawla, E. Ege, X. Deng, "Deformation analysis of lap-shear testing of solder joints," Acta materialia, vol. 53, no. 9, pp. 2633-2642, (2005).
    [50] J. K. Moon, K. I. Kang, J. P. Jung, Y. H. Zhou, "Effect of plasma cleaning on fluxless plasma soldering of Pb-free solder balls on Si-wafer," Materials transactions, vol. 45, no. 6, pp. 1880-1885, (2004).
    [51] K.-H. Kim, J. Koike, J.-W. Yoon, S. Yoo, "Effect of plasma surface finish on wettability and mechanical properties of SAC305 solder joints," Journal of Electronic Materials, vol. 45, no. 12, pp. 6184-6191, (2016).
    [52] S. A. Pelkey, A. J. Valsangkar, A. Landva, "Shear displacement dependent strength of municipal solid waste and its major constituent," Geotechnical Testing Journal, vol. 24, no. 4, pp. 381-390, (2001).
    [53] X. Huang, S.-W. Lee, C. C. Yan, S. Hui, "Characterization and analysis on the solder ball shear testing conditions," 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No. 01CH37220), pp. 1065-1071, (2001).
    [54] J.-W. Yoon, C.-B. Lee, D.-U. Kim, S.-B. Jung, "Reaction diffusions of Cu 6 Sn 5 and Cu 3 Sn intermetallic compound in the couple of Sn-3.5 Ag eutectic solder and copper substrate," Metals and Materials International, vol. 9, no. 2, pp. 193-199, (2003).
    [55] G.-Y. Jang, J.-W. Lee, J.-G. Duh, "The nanoindentation characteristics of Cu 6 Sn 5, Cu 3 Sn, and Ni 3 Sn 4 intermetallic compounds in the solder bump," Journal of Electronic materials, vol. 33, no. 10, pp. 1103-1110, (2004).
    [56] D. Yu, J. Zhao, L. Wang, "Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements," Journal of alloys and compounds, vol. 376, no. 1-2, pp. 170-175, (2004).
    [57] M. Islam, Y. Chan, M. Rizvi, W. Jillek, "Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder," Journal of Alloys and compounds, vol. 400, no. 1-2, pp. 136-144, (2005).

    無法下載圖示 全文公開日期 2025/09/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE