簡易檢索 / 詳目顯示

研究生: 吳怡嫻
Yi-sian Wu
論文名稱: 含銀奈米顆粒之可撓式單層奈米碳管透明導電薄膜之製備及性質研究
Preparation and Properties of the Silver Nanoparticles decorated Single-wall Carbon Nanotube Flexible Transparent Conductive Film
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 王英靖
Ing-jing Wang
陳耿明
Keng-ming Chen
林河木
Ho-mu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 單層奈米碳管螯合性高分子銀奈米顆粒
外文關鍵詞: single wall carbon nanotubes, chelating polymer, silver nanoparticles
相關次數: 點閱:334下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將單層奈米碳管 (single wall carbon nanotube, SWNT) 表面羧酸官能基化改質為SWNT-(CH2)2COOH (簡稱C-SWNT) ,並將合成之螯合性高分子—PPG-g-FA 接枝於C-SWNT 形成SWNT-(CH2)2COPPG-g-FA (簡稱PF-SWNT),使其能均勻地分散於水中,將PET薄膜表面披覆聚4-乙烯基吡啶(poly(4-vinylpyridine), P4VP) 形成具吸附性之PET薄膜 (簡稱 P4VP/PET) ; 利用浸塗 (dip-coating) 方式使P4VP/PET薄膜吸附C-SWNT 或 PF-SWNT,形成奈米碳管網絡 (CNT-networks) 薄膜—C-SWNT/P4VP/PET 及 PF-SWNT/P4VP/PET。最後利用此奈米碳管薄膜表面之官能基作為配位基 (ligands) 來螯合 (chelating) 銀離子形成錯化合物 (complex) ,並利用光化學還原 (photoreduction) 法製備得含銀奈米顆粒之可撓性奈米碳管透明導電薄膜—C-SWNT-Ag/P4VP/PET 及 PF-SWNT-Ag/P4VP/PET。以SEM、EDS及ESCA、四點探針和UV-Vis光譜儀分別測定透明導電薄膜表面型態、元素分析、導電度及透光度。


    The modified single-walled carbon nanotube (SWNT), SWNT-(CH2)2COOH (denoted as C-SWNT), was prepared by the reaction of SWNT with succinic acid acyl peroxide (SAAP). SWNT-CH2CH2COOH further grafted with the synthesized chelating polymer, PPG-g-FA to afford another modified SWNT—SWNT-(CH2)2COPPG-g-FA (denoted as PF-SWNT). The dispersedness and particle size of C-SWNT and PF-SWNT in water were investigated. The modified poly(ethylene terephathalate, PET) film which could form hydrogen bond with C-SWNT and PF-SWNT was prepared by spin-coating of poly(4-vinylpyridene) (P4VP) on the PET film (called P4VP/PET). P4VP/PET was dipped in C-SWNT and PF-SWNT suspensions, respectively, to form thin modified SWNT conductive films—C-SWNT/P4VP/PET and PF-SWNT/P4VP/PET. The two films were dipped in AgNO3 solution to let carboxyl groups of C-SWNT and PF-SWNT chelate with silver cations. The chelated silver cations on the films were then photoreduced into silver nanoparticles and decorated on the films—C-SWNT-Ag/P4VP/PET and PF-SWNT-Ag/P4VP/PET. The conductivity and the optical transmittance of the C-SWNT-Ag/P4VP/PET and PF-SWNT-Ag/P4VP/PET films were recorded by 4-point probe and UV-vis spectrometer. The morphology of and the existence of silver on the film were investigated by the scanning electron microscope (SEM) and the electron spectroscopy for chemical analysis (ESCA).

    摘要 I Abstract II 誌謝 III 附圖索引 VIII 附表索引 XII 第一章 前言 1 第二章 文獻回顧 5 2-1. 奈米碳管 5 2-1-1. 奈米碳管改質 5 2-1-2. 奈米碳管透明導電薄膜 7 2-2. 螯合性高分子 9 2-3. 銀奈米顆粒之製備 10 第三章 基本原理 12 3-1. 有機過氧化物之合成 12 3-2. 奈米碳管表面改質 12 3-2-1. 奈米碳管酸化機制 12 3-2-2. 奈米碳管醯化機制 13 3-2-3. 奈米碳管酯化機制 13 3-3. 奈米碳管薄膜之形成 14 3-4. 錯合物之形成機制 15 3-5. 金屬銀離子光化學還原機制 16 第四章 實驗部份 17 4-1. 實驗藥品 17 4-2. 實驗架構 19 4-3. 儀器與設備 20 4-4. 實驗步驟 21 4-4-1. SAAP之製備 21 4-4-2. 螯合性高分子 PPG-g-FA之製備 21 4-4-3. 奈米碳管之改質 21 4-4-3-1. C-SWNT之製備 21 4-4-3-2. T-SWNT之製備 22 4-4-3-3. PF-SWNT之製備 22 4-4-4. PET薄膜表面披覆高分子之製備 23 4-4-5. 奈米碳管透明導電薄膜之製備 24 4-4-6. 含銀奈米顆粒之奈米碳管透明導電薄膜之製備 24 4.5 實驗樣品測試及分析方法 26 第五章 結果與討論 28 5-1. 螯合性高分子之合成及性質分析 28 5-2. SWNT之改質及性質分析 30 5-2-1. FT-IR分析 31 5-2-2. 分散性之觀察 33 5-2-3. 粒徑分析 35 5-3. 奈米碳管透明導電薄膜之製備 36 5-3-1. PET薄膜表面處理及特性分析 36 5-3-2. PET薄膜表面處理與改質SWNT之反應 38 5-4. 奈米碳管透明導電薄膜之性質分析 40 5-4-1. 表面型態之測試及EDS分析 40 5-4-2. 電性質及透光度測試 45 5-5. 含銀奈米顆粒之奈米碳管透明導電薄膜製備 51 5-6. 含銀奈米顆粒之奈米碳管透明導電薄膜之性質分析 52 5-6-1. 表面型態之測試及EDS分析 52 5-6-2. ESCA測試 56 5-6-3. 電性質及透光度測試 57 第六章 結論 61 第七章 參考文獻 63

    1. 咸才軍, 奈米建材 , 五南, 2004.
    2. Iijima, S., Ichihashi, T., Nature 1993, 363, 603-605.
    3. Iijima, S., Nature 1991, 354, 56-58.
    4. 韋進全, 張先鋒, 王昆林, 奈米碳管具觀體 , 五南, 2004.
    5. Song, Y. I., Yang, C. M., Kim, D. Y., Kanoh, H., Kaneko, K., Journal of Colloid and Interface Science 2008, 318, 365-71.
    6. Park, Y. T., Ham, A. Y., Grunlan, J. C., Journal of Materials Chemistry 2011, 21, 363.
    7. Zhang, J., Gao, L., Sun, J., Liu, Y., Wang, Y., Wang, J., Kajiura, H., Li, Y., Noda, K., The Journal of Physical Chemistry C 2008, 112, 16370-16376.
    8. Sung, J., Jo, P. S., Shin, H., Huh, J., Min, B. G., Kim, D. H., Park, C., Advanced Materials 2008, 20, 1505-1510.
    9. Ng, M. H. Andrew, Hartadi, L. T., Tan, H., Patrick Poa, C. H., Nanotechnology 2008, 19, 205703-205707.
    10. Kaempgen, M., Duesberg, G., Roth, S., Applied Surface Science 2005, 252, 425-429.
    11. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., Rinzler, A. G., Science 2004, 305, 1273-6.
    12. Saran, N., Parikh, K., Suh, D.-S., Munoz, E., Kolla, H., Manohar, S. K., Journal of the American Chemical Society 2004, 126, 4462-4463.
    13. Kim, K. K., Bae, D. J., Yang, C.-M., An, K. H., Lee, J. Y., Lee, Y. H., Journal of Nanoscience and Nanotechnology 2005, 5, 1055-1059.
    14. Lu, Y., Xue, L., Li, F., Surface and Coatings Technology 2010, 205, 519-524.
    15. Prosyčevas, I., Puišo, J., Tamulevičius, S., Juraitis, A., Andrulevičius, M., Čyžiūtė, B., Thin Solid Films 2006, 495, 118-123.
    16. Jiang, Y., Wu, P., Appl. Spectrosc. 2008, 62, 207-212.
    17. Chen, Q., Ma, N., Qian, H., Wang, L., Lu, Z., Polymer 2007, 48, 2659-2664.
    18. Wang, L., Fu, Y., Wang, Z., Fan, Y., Zhang, X., Langmuir 1999, 15, 1360-1363.
    19. Georgakilas, V., Gournis, D., Tzitzios, V., Pasquato, L., Guldi, D. M., Prato, M., Journal of Materials Chemistry 2007, 17, 2679-2694.
    20. Acharya, H., Sung, J., Shin, H.-i., Park, S.-Y., Min, B. G., Park, C., Reactive and Functional Polymers 2009, 69, 552-557.
    21. Paul, R., Maity, A., Mitra, A., Kumbhakar, P., Mitra, A., Journal of Nanoparticle Research 2011, 13, 5749-5757.
    22. Tseng, C.H., Wang, C.C., Chen, C.Y., The Journal of Physical Chemistry B 2006, 110, 4020-4029.
    23. Xu, H., Literature Seminar 2007.
    24. Li, X. L., Liu, Y. Q., Fu, L., Cao, L. C., Wei, D. C., Wang, Y., Advanced Functional Materials 2006, 16, 2431-2437.
    25. Xue, C. H., Zhou, R. J., Shi, M. M., Gao, Y., Wu, G., Zhang, X. B., Chen, H. Z., Wang, M., Nanotechnology 2008, 19, 325605-325612.
    26. Xue, B., Chen, P., Hong, Q., Lin, J., Tan, K. L., Journal of Materials Chemistry 2001, 11, 2378-2381.
    27. Wildgoose, G. G., Banks, C. E., Compton, R. G., Small 2006, 2, 182-193.
    28. Lin, Y., Watson, K. A., Fallbach, M. J., Ghose, S., Smith, J. G., Delozier, D. M., Cao, W., Crooks, R. E., Connell, J. W., ACS Nano 2009, 3, 871-884.
    29. Tseng, C. H., Chen, C. Y., Nanotechnology 2008, 19, 035606-035613.
    30. Hirsch, A., Angewandte Chemie International Edition 2002, 41, 1853-1859.
    31. Tsang, S. C., Chen, Y. K., Harris, P. J. F., Green, M. L. H., Nature 1994, 372, 159-162.
    32. Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R., Jellen, F., Angewandte Chemie International Edition 2001, 40, 4002-4005.
    33. Holzinger, M., Steinmetz, J., Samaille, D., Glerup, M., Paillet, M., Bernier, P., Ley, L., Graupner, R., Carbon 2004, 42, 941-947.
    34. Martinez-Rubi, Y., Guan, J.; Lin, S., Scriver, C., Sturgeon, R. E., Simard, B., Chemical Communications 2007, 5146-5148.

    35. Peng, H., Alemany, L. B., Margrave, J. L., Khabashesku, V. N., Journal of the American Chemical Society 2003, 125, 15174-15182.
    36. Peng, H., Reverdy, P., Khabashesku, V. N., Margrave, J. L., Chemical Communications 2003, 362-363.
    37. Huang, C. J., Lin, J. J., Shieu, F. S., Japanese Journal of Applied Physics 2005, 44, 6332-6340.
    38. Cheng W. M., Wang, C. C., Chen, C. Y., Journal of colloid and interface science 2010, 49-56.
    39. Fu, J., Cong, Y., Gao, J., Yu, X., Pan, C., Li, B., Han, Y., Nanotechnology 2007, 18, 025704.
    40. 王雪蓓, 王繼業, 宋會花, 化學通報, 2005.
    41. Xu, G. N., Qiao, X. L., Qiu, X. L., Chen, J. G., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 320, 222-226.
    42. Huang, L., Zhai, M. L., Long, D. W., Peng, J., Xu, L., Wu, G. Z., Li, J. Q., Wei, G. S., Journal of Nanoparticle Research 2008, 10, 1193-1202.
    43. Courrol, L. C., de. Oliveira. Silva, F. R., Gomes, L., Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 305, 54-57.
    44. Keki, S., Torok, J., Deak, G., Daroczi, L., Zsuga, M., Journal of colloid and interface science 2000, 229, 550-553.
    45. Malval, J.-P., Jin, M., Balan, L., Schneider, R. l., Versace, D.-L., Chaumeil, H. l. n., Defoin, A., Soppera, O., The Journal of Physical Chemistry C 2010, 114, 10396-10402.
    46. Sangermano, M., Yagci, Y., Rizza, G., Macromolecules 2007, 40, 8827-8829.
    47. Rogach, A. L., Shevchenko, G. P., Afanas'ev, Z. M., Sviridov, V. V., The Journal of Physical Chemistry B 1997, 101, 8129-8132.
    48. Machado, G., Beppu, M. M., Feil, A. F., Figueroa, C. A., Correia, R. R. B., Teixeira, S. R., The Journal of Physical Chemistry C 2009, 113, 19005-19010.
    49. Miyama, T., Yonezawa, Y., Journal of Nanoparticle Research 2004, 6, 457-465.
    50. Michaelides, A., Kiritsis, V., Skoulika, S., Angewandte Chemie International Edition in English 1993, 32, 1495-1497.

    QR CODE