簡易檢索 / 詳目顯示

研究生: 簡莞錤
Wan-Chi Chien
論文名稱: 結合零階光再利用與振動鏡面的全像影像優化方法
Image Optimization of Computer Generated Hologram by Reusing Zero-order Beams and Reflectors Vibration
指導教授: 陳建宇
Chien-Yu Chen
胡國瑞
Kuo-Jui Hu
口試委員: 陳建宇
胡國瑞
張軒庭
林晃巖
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 46
中文關鍵詞: 電腦產生全像空間光調制器影像優化方法零階光再利用降低雷射光斑
外文關鍵詞: computer-generated hologram, spatial light modulator, image optimization, zero-order beams reusing, reduce speckle
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電腦產生全像技術(Computer-generated hologram, CGH)中,編譯完電腦產生全像後,需要使用空間光調製器(Spatial Light Modulator, SLM)來進行影像重建,並使用雷射光作為重建光源,然而,重建的影像品質往往受到零階光以及雷射光斑兩項干擾而下降。其中,零階光是未經過正確相位調製的光束,保持其原始相位及震幅,在重建全像影像時,零階光會降低圖像對比度和清晰度,並對目標重建影像產生干擾;而雷射光為高同調性之光源,容易受到空氣中的塵埃等因素影響,使光波產生不規則變化的振幅及相位,這些波相互疊加後,產生建設性干涉及破壞性干涉,而在重建影像中形成隨機亮暗光點的光斑,雷射光斑會使重建影像亮度不均,且會掩蓋重建影像的細節,造成影像品質和清晰度降低。
    為了解決上述兩項問題,本研究率先提出零階光再利用,除了使重建影像不再受零階光干擾,並且使影像平均光強度增強57%~62%。此外,我們在零階光再利用架構中,我們也率先提出使用震動反光鏡來降低光斑,可使重建影像的光斑對比度降至3.8%~9.3%,使重建影像品質獲得提升。


    Computer-generated hologram (CGH) commonly utilizes spatial light modulator (SLM) and laser for image reconstruction. However, the quality of the reconstructed image is often compromised by two interferences: laser speckle and zero-order beams.
    Zero-order beam, an unmodulated beam with its original phase and amplitude, significantly affects the contrast and clarity of the reconstructed image. On the other hand, laser light, known for its high coherence, is susceptible to irregular variations in amplitude and phase caused by environmental factors such as dust in the air. When these waves superpose, constructive and destructive interferences occur, resulting in random bright and dark spots called speckles. These laser speckles cause uneven brightness in reconstructed images and obscure finer details, thus reducing the image quality and clarity.
    To address these issues, this study proposes the novel concept of zero-order beams reusing. By reusing zero-order beams, not only is the reconstructed image no longer affected by zero-order beams interference, but also the image average intensity is enhanced by 57%~62%. Furthermore, within the framework of zero-order beams reusing, we are the first to propose the use of vibrating reflectors to reduce speckle, which can reduce the speckle contrast of reconstructed images to 3.8%~9.3%, leading to improved image quality.

    摘要 II Abstract III 致謝 IV 目錄 V 表目錄 VI 圖目錄 VII 第1章、 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第2章、 文獻回顧 3 2.1 電腦產生全像原理與介紹 3 2.2 電腦產生全像影像品質優化 7 2.2.1 消除零階光 7 2.2.2 雷射光斑降低 11 第3章、 光學系統設計 16 3.1 零階光再利用 16 3.2 減少光斑對比度 21 3.2.1 破壞雷射光空間同調性 21 3.2.2 破壞雷射光時間同調性 23 第4章、 研究結果 25 4.1 光學重建系統架設 25 4.2 重建影像設計 32 4.3 光學重建結果 35 第5章、 結果分析與討論 37 5.1 重建影像光強度 37 5.2 重建影像光斑對比度 37 5.3 討論 39 第6章、 結論與未來展望 41 參考文獻 43

    [1] D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, "Vergence–accommodation conflicts hinder visual performance and cause visual fatigue," Journal of vision, vol. 8, no. 3, pp. 33-33, 2008.
    [2] T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, "Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict," in Stereoscopic Displays and Applications XXII, 2011, vol. 7863: SPIE, pp. 222-230.
    [3] M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, "Visual discomfort and visual fatigue of stereoscopic displays: A review," Journal of imaging science and technology, vol. 53, no. 3, pp. 30201-1, 2009.
    [4] S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, "Depth cues in human visual perception and their realization in 3D displays," in Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, 2010, vol. 7690: SPIE, pp. 92-103.
    [5] D. Gabor, "A new microscopic principle," SPIE MILESTONE SERIES MS, vol. 94, pp. 563-563, 1994.
    [6] B. Brown and A. Lohmann, "IBM J," Res. Develop, vol. 13, p. 160, 1969.
    [7] J. C. Dainty, Laser speckle and related phenomena. Springer science & business Media, 2013.
    [8] C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, "Elimination of zero-order diffraction in digital holography," Optical Engineering, vol. 41, no. 10, pp. 2434-2437, 2002.
    [9] J. Artigas, A. Felipe, and M. Buades, "Contrast sensitivity of the visual system in speckle imagery," JOSA A, vol. 11, no. 9, pp. 2345-2349, 1994.
    [10] F. Wyrowski, R. Hauck, and O. Bryngdahl, "Computer-generated holography: hologram repetition and phase manipulations," JOSA A, vol. 4, no. 4, pp. 694-698, 1987.
    [11] M. Bayraktar and M. Özcan, "Method to calculate the far field of three-dimensional objects for computer-generated holography," Applied optics, vol. 49, no. 24, pp. 4647-4654, 2010.
    [12] H.-E. Hwang, H. T. Chang, and W.-N. Lie, "Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain," Optics letters, vol. 34, no. 24, pp. 3917-3919, 2009.
    [13] N. Hashimoto, S. Morokawa, and K. Kitamura, "Real-time holography using the high-resolution LCTV-SLM," in Practical Holography V, 1991, vol. 1461: SPIE, pp. 291-302.
    [14] M. Lucente and T. A. Galyean, "Rendering interactive holographic images," in Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, pp. 387-394.
    [15] G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, "Optical imaging and metrology: Advanced technologies," ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
    [16] M. Makowski et al., "Experimental evaluation of a full-color compact lensless holographic display," Optics express, vol. 17, no. 23, pp. 20840-20846, 2009.
    [17] M. G. Friedel, The mesomorphic states of matter. US Army Engineer Research and Development Laboratories, 1967.
    [18] Q. Li, Liquid crystals beyond displays: chemistry, physics, and applications. John Wiley & Sons, 2012.
    [19] M. H. Schuck, D. J. McKnight, and K. M. Johnson, "Spin-cast planarization of liquid-crystal-on-silicon microdisplays," Optics letters, vol. 22, no. 19, pp. 1512-1514, 1997.
    [20] Y. Huang, E. Liao, R. Chen, and S.-T. Wu, "Liquid-crystal-on-silicon for augmented reality displays," Applied Sciences, vol. 8, no. 12, p. 2366, 2018.
    [21] D. Palima and V. R. Daria, "Holographic projection of arbitrary light patterns with a suppressed zero-order beam," Applied optics, vol. 46, no. 20, pp. 4197-4201, 2007.
    [22] D. W. Wong and G. Chen, "Redistribution of the zero order by the use of a phase checkerboard pattern in computer generated holograms," Applied optics, vol. 47, no. 4, pp. 602-610, 2008.
    [23] S. Chuan, Z. Cheng, C. Hong, Z. Fen, and W. Sui, "Holographic projection using converging spherical wave illumination," in 2013 Seventh International Conference on Image and Graphics, 2013: IEEE, pp. 761-765.
    [24] V. Yurlov, A. Lapchuk, S. Yun, J. Song, and H. Yang, "Speckle suppression in scanning laser display," Applied Optics, vol. 47, no. 2, pp. 179-187, 2008.
    [25] E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, "Speckle-free rear-projection screen using two close screens in slow relative motion," JOSA, vol. 66, no. 11, pp. 1290-1294, 1976.
    [26] C.-Y. Chen, W.-C. Su, C.-H. Lin, M.-D. Ke, Q.-L. Deng, and K.-Y. Chiu, "Reduction of speckles and distortion in projection system by using a rotating diffuser," Optical review, vol. 19, pp. 440-443, 2012.
    [27] S. Kubota and J. W. Goodman, "Very efficient speckle contrast reduction realized by moving diffuser device," Applied optics, vol. 49, no. 23, pp. 4385-4391, 2010.
    [28] S. Lowenthal and D. Joyeux, "Speckle removal by a slowly moving diffuser associated with a motionless diffuser," JOSA, vol. 61, no. 7, pp. 847-851, 1971.
    [29] K. i. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, "A practical laser projector with new illumination optics for reduction of speckle noise," Japanese journal of applied physics, vol. 43, no. 8S, p. 5904, 2004.
    [30] Y. Kuratomi et al., "Speckle reduction mechanism in laser rear projection displays using a small moving diffuser," JOSA A, vol. 27, no. 8, pp. 1812-1817, 2010.
    [31] Z. Liao, T. Xing, G. Cheng, and W. Lin, "Speckle reduction in laser projection display by modulating illumination light," in International Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology, 2008, vol. 6622: SPIE, pp. 633-641.
    [32] Y. Imai and Y. Ohtsuka, "Laser speckle reduction by ultrasonic modulation," Optics Communications, vol. 27, no. 1, pp. 18-22, 1978.
    [33] Y. Imai, M. Imai, and Y. Ohtsuka, "Optical coherence modulation by ultrasonic waves. 2: Application to speckle reduction," Applied Optics, vol. 19, no. 20, pp. 3541-3544, 1980.
    [34] L. Wang, T. T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, "Speckle reduction in laser projections with ultrasonic waves," Optical Engineering, vol. 39, no. 6, pp. 1659-1664, 2000.
    [35] L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, "Speckle reduction in laser projection systems by diffractive optical elements," Applied optics, vol. 37, no. 10, pp. 1770-1775, 1998.

    [36] F. Wippermann, U.-D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, "Beam homogenizers based on chirped microlens arrays," Optics express, vol. 15, no. 10, pp. 6218-6231, 2007.
    [37] J. Pauwels and G. Verschaffelt, "Speckle reduction in laser projection using microlens-array screens," Optics express, vol. 25, no. 4, pp. 3180-3195, 2017.
    [38] T. Mizushima et al., "L‐9: Late‐News Paper: Laser Projection Display with Low Electric Consumption and Wide Color Gamut by Using Efficient Green SHG Laser and New Illumination Optics," in SID Symposium Digest of Technical Papers, 2006, vol. 37, no. 1: Wiley Online Library, pp. 1681-1684.
    [39] Q.-L. Deng, B.-S. Lin, P.-J. Wu, K.-Y. Chiu, P.-L. Fan, and C.-Y. Chen, "A hybrid temporal and spatial speckle-suppression method for laser displays," Optics Express, vol. 21, no. 25, pp. 31062-31071, 2013.
    [40] Y. Ohtake, T. Ando, N. Fukuchi, N. Matsumoto, H. Ito, and T. Hara, "Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator," Optics letters, vol. 32, no. 11, pp. 1411-1413, 2007.
    [41] T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, "Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators," Optics letters, vol. 34, no. 1, pp. 34-36, 2009.
    [42] J. W. Goodman, "Statistical properties of laser speckle patterns," in Laser speckle and related phenomena: Springer, 1975, pp. 9-75.
    [43] F. Riechert, G. Bastian, and U. Lemmer, "Laser speckle reduction via colloidal-dispersion-filled projection screens," Applied optics, vol. 48, no. 19, pp. 3742-3749, 2009.

    無法下載圖示 全文公開日期 2034/03/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE