簡易檢索 / 詳目顯示

研究生: 林孟廷
Meng-Ting Lin
論文名稱: 具有耦合的退化源電感之互補差分電壓控制震盪器
Complementary Differential Voltage-Controlled-Oscillators with Coupled Degenerated-Source Inductors
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
林銘波
Ming-Bo Lin
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 151
中文關鍵詞: 壓控震盪器注入鎖定倍三電感電容共振腔四相位壓控震盪器八字電感
外文關鍵詞: VCO, ILFT, QVCO, Eight-shaped inductor, LC-tank
相關次數: 點閱:165下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技的飛速進步改變了我們的生活方式,帶來前所未有的便利和創新。新產品對於高頻的需求與日俱增,各種不同功能的電路與系統,在製程尺度微縮的影響和保持電路性能的前提下如何將其有效的整合在一起,更是艱難的挑戰。其中高頻電路更是深受影響,高頻訊號因距離縮短產生更強的耦合效應對電路性能的影響是不可避免的。而其中的VCO、倍頻器以及除頻器等電路,在能量的損耗以及性能的要求都相當苛刻,像是低功耗、低相位雜訊、更寬頻的工作範圍亦或是不同的特性。
    因此本文分成三部分,分別為三電感耦合VCO、藉由VT調頻之低功耗三倍頻器以及tail耦合之四相位VCO。晶片使用TSMC 0.18-μm CMOS mixed-signal and RF 1P6M technology 和 TSMC 0.18-μm BICMOS mixed-signal SiGe general purpose standard process FSG Al 3P6M 1.8 & 3.3 V製作。
    第一部分是由三電感互相耦合之互補式低功耗壓控震盪器,此電路是由TSMC SiGe 0.18-μm設計與模擬。首先,以互補式交錯耦合對(complementary cross-couples pair)做為壓控震盪器之主架構,再使用ADS繪製電感和萃取S參數後,將SP檔帶回VCO進行模擬並檢驗其性能。此章節將深入討論VCO的整體架構、設計理念、設計原理、模擬和量測結果。另外,主電感和兩個source degeneration電感組成的變壓器(Transformer),不僅節省了三電感所占用的面積,同時也在功耗表現和相位雜訊上有顯著的幫助。晶片面積 0.7×0.88 mm2。
    第二部分介紹了一種由VT調頻的低功耗注入鎖定三倍頻器(ILFT),使用差動輸入基頻,經由兩顆NMOS源極串接一環型電感產生二倍諧振後,藉由NMOS混合基頻和二倍諧振,汲極產生三倍頻後,經雙圈八字電感震盪器濾除基頻和二倍諧振後輸出。在VDD為0.65,VT = 0時自振頻率為7.59 GHz,VT = 2時自振頻率為9.81 GHz。注入信號為0 dBm時,功耗為3.9 mW,注入基頻從2.4 GHz至3.4 GHz,倍三鎖定範圍為7.2 GHz至10.2 GHz。
    第三部分為經tail電感耦合之QVCO,由兩組完全對稱的互補式交叉耦合對之VCO組合而成。晶片面積為1.2 × 1.1 mm2。當VDD為1.35時,功耗為2.8 mW,調頻範圍從6.29 GHz至7.09 GHz,輸出為6.32 GHz時,1 MHz之相位雜訊為-113.8866 dBc/Hz,輸出為7.09 GHz時,1 MHz之相位雜訊為-112.4584 dBc/Hz。
    第四部份設計了一個9.77 GHz的LC谐振腔VCO,採用0.18μm CMOS工工藝制造。VCO核心使用單圈三葉草形狀的電感器進行噪聲抑制,同時VCO還使用两個中心抽頭耦合場效應晶體管退化源電感器來提高性能。三電感器共享一個共中空區域,以實現高效的面積设计。製造的VCO包括缓冲器在内占用的面積為1.055×0.534 mm²,可調範圍為9.77 GHz至10.82 GHz。性能指標(FOM)為-193.16 dBc/Hz.


    The rapid advancement of technology has transformed our way of life, bringing unprecedented convenience and innovation. The demand for high-frequency applications has surged, presenting challenges in integrating various functions and circuits while maintaining performance in the context of shrinking process scales. High-frequency circuits, such as Voltage-Controlled Oscillators (VCOs), frequency multipliers, and dividers, face stringent requirements in terms of energy efficiency and performance, including low power consumption, low phase noise, and broader operating ranges. All designs were implemented using TSMC 0.18-μm CMOS mixed-signal and RF 1P6M technology or TSMC 0.18-μm BICMOS mixed-signal SiGe general-purpose standard process FSG Al 3P6M 1.8&3.3V.
    This document is divided into three parts, each addressing specific challenges in high-frequency circuit design:
    Part 1: Complementary Differential Voltage-Controlled-Oscillators with Coupled Degenerated-Source Inductors. Area and performance are two important trade-off criteria for voltage-controlled oscillator (VCO) design. This paper designs a 7.0 GHz LC-tank VCO fabricated in a 0.18 μm BiCMOS process. The VCO-core uses a two-turn 8-shaped inductor for noise suppression and the VCO also uses two center-tapped coupled FET degenerated source inductors for performance enhancement. The three inductors share a common hollow area for area-efficient design. The fabricated VCO occupies an area of 0.88×0.70 mm2 including the buffer and is tunable from 6.89 GHz to 7.49 GHz. The figure of merit (FOM) is -192.62 dBc/Hz. The VCO also exploits the explicit common-mode (CM) resonance to reduce the phase noise.
    Part 2: VT-Tuned Low-Power Differential Injection-Locked Frequency Tripler. This part designs an injection-locked frequency tripler (ILFT) fabricated in a 0.18 μm CMOS process. The ILFT uses a voltage-controlled oscillator (VCO) with a two-turn 8-shaped inductor for low noise interference coupling and it also uses a frequency tripler with a common source inductor for frequency doubler generation. The two inductors are configured as a coupling factor transformer for die area saving. The fabricated ILFT with the low-coupling transformer occupies an area of 1.146×0.484 mm2 including the buffer and is tunable from 7.61 GHz to 9.81 GHz.
    Part 3: Tail-Coupled Quadrature VCO (QVCO). This section designs a 6.29 GHz LC-tank quadrature voltage-controlled oscillator (QVCO) fabricated in 0.18 μm CMOS process. The fabricated QVCO occupies an area of 1.2×1.10 mm2 including the buffer and is tunable from 6.29 GHz to 7.09 GHz. The QVCO comprises two differential sub-VCOs with a two-turn 8-shaped inductor as the core resonator and the two VCOs coupled by a tail 8-shaped inductor pair as a quadruple push-push coupling device.
    Part 4: This letter designs a 9.77 GHz LC-tank VCO fabricated in a 0.18μm CMOS process. The VCO-core uses a one-turn clover-shaped inductor for noise suppression and the VCO also uses two center-tapped coupled FET degenerated source inductors for performance enhancement. The three inductors share a common hollow area for area-efficient design. The fabricated VCO occupies an area of 1.055×0.534 mm2 including the buffer and is tunable from 9.77 GHz to 10.82 GHz. The figure of merit (FOM) is -193.16 dBc/Hz.

    摘要 1 Abstract 6 致謝 9 Table of Contents 10 List of Figures 12 List of Tables 20 Chapter 1 Introduction 21 1.1 Background 21 1.2 Thesis Organization 25 Chapter 2 Overview and Design Considerations of Voltage Controlled Oscillators (VCOs) 27 2.1 Introduction 27 2.2 The Oscillators Theory 30 2.2.1 Oscillation Basics (Two ports) 31 2.2.2 Negative Resistance and Resonator (One port) 33 2.3 Category of Oscillators 37 2.3.1 Ring Oscillator 37 2.3.2 LC Oscillator 42 2.4 Design Concepts of Voltage-Controlled Oscillator 47 2.4.1 Parameters of a Voltage-Controlled Oscillator 48 2.4.2 Phase Noise 50 2.4.3 Quality Factor 59 Chapter 3 Complementary Differential Voltage-Controlled-Oscillators with Coupled Degenerated-Source Inductors 61 3.1 Introduction 61 3.2 Circuit Design 63 3.3 Experimental 72 3.4 Impedance simulation 78 Chapter 4 Differential Injection-Locked Frequency Tripler 88 4.1 Introduction 88 4.2 Circuit Design 89 4.3 Experimental Data 91 4.4 Improved architecture 98 Chapter 5 Eight-shaped Inductor-based Quadrature Voltage Controlled-Oscillators with a Tail Inductor Coupling 108 5.1 Introduction 108 5.2 QVCO Circuit Design 110 5.3 Experiment of the QVCO 121 Chapter 6 Complementary Voltage-Controlled-Oscillators with Coupled Degenerated-Source Inductor 127 6.1 Introduction 127 6.2 Circuit Design 129 6.3 Experiment 136 Chapter 7 Conclusions 143 References 146

    [1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] N. M. Nguyen and R. G. Meyer, "Start-up and frequency stability in high-frequency oscillators," in IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 810-820, May 1992, doi: 10.1109/4.133172.
    [3] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [5] Y. Sun, W. Deng, H. Jia, Z. Wang and B. Chi, "A 4.4-GHz 193.2-dB FoM 8-shaped-inductor based LC-VCO using orthogonal-coupled triple-coil transformer", IEEE Trans. Circuits Syst. II: Express Briefs, vol.69, no.10, pp.4028-4032, 2022.
    [6] H. Shin and H. Kim, “Extraction technique of differential second harmonic output in CMOS LC VCO,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 379–381, May 2007
    [7] E. Hegazi, H. Sjoland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921–1930, Dec. 2001.
    [8] I. Gertman, R. Levinger, S. Bershansky, J. Kadry and G. Horovitz, "A 33% tuning range cross-coupled DCO with “Folded” common mode resonator covering both 5G MMW bands in 16-nm CMOS FinFet," 2020 15th European Microwave Integrated Circuits Conference (EuMIC), Utrecht, Netherlands, 2021, pp. 109-112.
    [9] D. Fathi and A. Nejad, "Ultra-low power, low phase noise 10 GHz LC VCO in the subthreshold regime," Circuits and Systems, Vol. 4 No. 4, 2013, pp. 350-355.
    [10] Y. Peng et al., "A harmonic-tuned VCO with an intrinsic-high-Q F23 inductor in 65-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 981-984, Oct. 2020, doi: 10.1109/LMWC.2020.3016300.
    [11] Z. Zong, G. Mangraviti, and P. Wambacq, “Low 1/f3 noise corner LC VCO design using flicker noise filtering technique in 22 nm FD-SOI,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 5, pp. 1469–1480, May 2020.
    [12] J. Yang, C.-Y. Kim, D.-W. Kim and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits and Systems—II: Express Briefs, Vol. 57, No. 3, 2010, pp. 173-177.
    [13] P. Wang et al., "A low phase-noise class-C VCO using novel 8-shaped transformer," 2015 IEEE Int. Symp. Circuits and Systems (ISCAS), Lisbon, 2015, pp. 886-889.
    [14] N. J. Oh, and S. G. Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 733–735, Dec. 2005.
    [15] H.-C. Lee, S.–L. Jang, and Y.‐H. Chen,” Low phase noise buffer‐reused BiCMOS oscillator,” Microw Opt Technol Lett. vol. 63, no. 7, July 2021 pp. 1881-1885.
    [16] R. S. Rana, X. D. Zhou, and Y. Lian, "An optimized 2.4 GHz CMOS LC-tank VCO with 0.55 %/V frequency pushing and 516 MHz tuning range," 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 4811-4814 Vol. 5, doi: 10.1109/ISCAS.2005.1465709.
    H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise
    CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microw. Theory
    Techn., vol. 54, no. 7, pp. 2917–2923, Jul. 2006
    [17] H. -C. Lee, S. -L. Jang and R. -X. Yang, "Low power CMOS VCO using an 8-shaped transformer," 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, NV, USA, 2023, pp. 19-21, doi: 10.1109/SiRF56960.2023.10046255.
    [18] D. Murphy, H. Darabi and H. Wu, "Implicit Common-Mode Resonance in LC Oscillators," in IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 812-821, March 2017, doi: 10.1109/JSSC.2016.2642207.
    [19] R. S. Rana, X. D. Zhou and Y. Lian, "An optimized 2.4 GHz CMOS LC-tank VCO with 0.55 %/V frequency pushing and 516 MHz tuning range," 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 4811-4814 Vol. 5, doi: 10.1109/ISCAS.2005.1465709.
    [20] T. M. Hancock and G. M. Rebeiz, "A novel superharmonic coupling topology for quadrature oscillator design at 6 GHz," IEEE Radio frequency Integrated Circuits Symposium, pp. 285-288, 2004.
    [21] S. C. Tseng, C. C. Meng, Y. W. Chang, and G. W. Huang, "4-GHz fully monolithic SiGe HBT QVCO using superharmonic coupling topology," 2006 European Microwave Integrated Circuits Conference, 2006, pp. 161-164.
    [22] S. L.J. Gierkink, S. Levantino, R. C. Frye, C. Samori and V. Boccuzzi, "A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling, " IEEE J. Solid-State Circuits, vol. 38, no.7, pp. 1148-1154, July 2003.
    [23] S. -L. Jang, C. -J. Huang, C. -C. Liu and C. -W. Hsue, "A 0.22 V quadrature VCO in 90 nm CMOS process," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 566-568, Sept. 2009.
    [24] S. -L. Jang, C. -C. Shih, C. -C. Liu and M. -H. Juang, "A 0.18 μm CMOS Quadrature VCO using the quadruple push-push coupling technique," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 343-345, June 2010.
    [25] P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, "A low phase noise quadrature phase oscillator with frequency pulling suppression technique," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1145-1147.
    [26] S. -L. Jang, Yi-Ping Hsieh, and Wen-Cheng Lai, "Voltage-controlled-oscillator using an 8-shaped transformer-coupled transmission line," 2024 IEEE Radio and Wireless Symposium (RWS 2024), San Antonio, TX, USA.
    [27] H. -T. Huang, M. -H. Wu, Y. -H. Lin, T. -W. Huang and J. -H. Tsai, "A 3.7 mW 75-87- GHz injection-locked frequency tripler using bandwidth-enhanced transformer- coupled topology for automatic radar applications," 2015 European Microwave Conference (EuMC), pp. 399-402.
    [28] W. L. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
    [29] . -C. Lai, S. -L. Jang, H. -A. Yeh and M. -H. Juang, "A low-power injection-locked frequency tripler in 90 nm CMOS technology," 2020 IEEE 5th Int. Conf. Integrated Circuits and Microsystems (ICICM), Nanjing, China, 2020, pp. 96-100.
    [30] N. Itoh, H. Masuoka, S.-I. Fukase, K.-I. Hirashiki, and M. Nagata, “Twisted inductor VCO for suppressing on-chip interferences,” in Proc. Asia-Pac. Microw. Conf., Dec. 2007, pp. 1–4.
    [31] N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, "Twisted transformers for low coupling RF and mixed-signal applications," 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 2009, pp. 429-432, doi: 10.1109/ISCAS.2009.5117777.
    [32] K. -W. Cheng, S. -K. Chang and Y. -C. Huang, "Low-power and low-phase-noise Gm -enhanced current-reuse differential Colpitts VCO," ” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 5, pp. 733-737, May 2019, doi: 10.1109/TCSII.2019.2908423.
    [33] Y. -C. Chang, T. -Y. Lin, C. -P. Hsieh, P. -. Y. Wang, S. S. H. Hsu, and D. -C. Chang, "A low EM susceptibility VCO with four-leaf-clover-shaped inductor verified via chip-level 3D near-field measurement technique," 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021, pp. 482-484, doi: 10.1109/IMS19712.2021.9574883.
    [34] J. -H. Tsai and J. -P. Chou, "A K-band low-power CMOS transformer-feedback VCO," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Austin, TX, USA, 2013, pp. 195-197, doi: 10.1109/SiRF.2013.6489477.
    [35] N. N. Tchamov and N. T. Tchamov, “Technique for flicker noise up-conversion suppression in differential LC oscillators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 959–963, Nov. 2007.
    [36] B. Shrestha and N. -Y. Kim, "Double cross-coupled Colpitts VCO with low phase noise using InGaP/GaAs HBT technology," 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, 2007, pp. 599-602, doi: 10.1109/RFIC.2007.380955.
    [37] X. Xu, X. Yang and T. Yoshimasu, "A 2-GHz-band low-phase-noise VCO IC with an LC bias circuit in 180-nm CMOS," 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 2016, pp. 197-200, doi: 10.1109/EuMIC.2016.7777524.
    [38] X. Yang, X. Xu and T. Yoshimasu, "An ultra-low-voltage Class-C PMOS VCO IC with PVT compensation in 180-nm CMOS," 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA, 2016, pp. 107-109, doi: 10.1109/SIRF.2016.7445482.
    [39] X. Xu, X. Yang and T. Yoshimasu, "2.4-GHz band ultra-low-voltage LC-VCO IC in 180-nm CMOS," 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, 2015, pp. 13-16, doi: 10.1109/EDSSC.2015.7285037.
    [40] Y. Zhang et al., "A 5.8 GHz implicit class-F VCO in 180-nm CMOS technology," 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019, pp.1170-1172, doi: 10.1109/APMC46564. 2019. 9038499.
    [41] T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung and E. Yoon, "A 5 GHz transformer-coupled shifting CMOS VCO using bias-level technique," 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, Forth Worth, TX, USA, 2004, pp. 127-130, doi: 10.1109/RFIC.2004.1320547.

    QR CODE