簡易檢索 / 詳目顯示

研究生: 呂孟哲
Meng-Che Lu
論文名稱: 可見光波段(400-1000nm)及短波紅外光波段(900-1700nm)帶通線性漸變濾波片之設計與模擬及分析
Design, Simulation and Performance Analysis of Visible-to-Near Infared (400-1000nm) and Short-Wave Infared (900-1700nm) Bandpass Linear Variable Filters
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Zhi-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 237
中文關鍵詞: 線性漸變濾波器光譜儀蒸鍍光學薄膜高通濾波低通濾波帶通濾波穿透頻譜圖
外文關鍵詞: Linear variable filter, Spectrometer, Evaporation, Thin film, High pass filtering, Low pass filtering, Band pass filtering, Transmission spectrum
相關次數: 點閱:1067下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討光譜儀的系統中,利用光柵方程式將入射光分光後,會形成一階及二階以上的光波,設計高通濾波主要是先前所開發的二階線性漸變濾波器(second-order Linear Variable Filter,LVF),二階線性漸變濾波片為了保留光譜儀系統中光柵分光後一階的光波,而濾除二階及二階以上的光波,探討二階線性漸變濾波器(second-order Linear Variable Filter,LVF)的穿透頻譜圖模擬設計。
    本研究使用薄膜厚度理論,建立於線性漸變濾波片上,於目標製程上加入蒸鍍機台相關之製程參數、擋板高度設計等,利用數值運算軟體Matlab模擬基板上之膜厚分佈及輪廓,判斷膜厚分佈中,相對厚度25%至75%為最佳線性度,利用此結果,找出不同擋板高度下,所求得線性漸變區寬度,應用於線性漸變濾波片穿透率光譜之表現。
    本實驗應用於可見光波段(400-1000nm)與短波紅外光波段(900-1700nm)進行膜堆設計,使用於業界廣泛使用的光學鍍膜設計軟體TF-Calc,以低通對稱膜堆設計並優化,接著分析高通濾波以及低通濾波線性漸變濾波片之線性變化,得知臨界波長λ_C相對應相對厚度,求得R平方值,確保線性度的可能性。調整相對厚度,呈現對應之穿透光譜之表現,定義線性漸變區相對厚度中間為50%,選定光譜儀偵測器之寬度,得出高通濾波與低通濾波線性漸變區寬度,由得知的線性漸變區寬度找出不同擋板高度下之線性漸變濾波片。
    為了達到帶通濾波線性漸變之效果,高通濾波線性漸變濾波片需與低通濾波線性漸變濾波片重疊,針對不同高低通濾波之膜堆設計,能呈現不同半高全寬(Full Width at Half Maximum)之大小與帶通濾波最高穿透率之波長位置,並且分析帶通濾波片光譜分辨力(Resolving Power)之解析度。


    The grating equations split the incident light and generate first-order and the above of the second-order wavelengths in a spectrometer system.Previously the development of a second-order linear variable filter (LVF) was mainly designed high pass filtering.In order to reserve a first-order after the grating split it eliminates second-order and the above of second-order wavelengths in a spectrometer system.A second-order linear variable filter is discussed in the simulation and design of transmission spectrum.
    The research is used for the design of distribution for thin film thickness which building on a second-order linear variable filter.The use of numerical operation Matlab simulated the distribution for thin film thickness and profile because of matlab is added to the fabricated parameters and designing the height of mask in a coating machine.The relative thickness 25% to 75% is the best linearity judging by the distribution for thin film.The result of different the height of local mask get the wide of linear variation which is applied to the performance of transmission spectrum.
    The experiment designed the stack of thin film and used a software for optical film design.Based on designing the stack of thin film and optimization,it analysed the linear variation of low pass filtering and high pass filtering on visible near-infared (VNIR) and short wavelength infared (SWIR).The critical wavelength correspond to the relative of thickness and get the value of the R square.It assured that the relative of 25% to 75% have the probability of the linearity.The definition of the center relative thickness is 50% in the area of linear variation.If you choose the wide of detector,you can get linear variable wide of low pass filtering and high pass filtering.The wide of linear variation find the different of the height of the local mask on a second-order linear variable filter.
    In order to achieve the effect of linear variable band pass filtering,the high pass filtering overlaps the low pass filtering.With the design of film stack for the difference of high pass and low pass filterings,it performs the difference of full width at half maximum and the position of the best transmittance in a band pass filtering and analyzes the resolution of the band pass filter.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XXVI 1 第一章 序論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究背景 2 1.4 研究架構 9 2 第二章 線性漸變濾波片膜厚理論設計 11 2.1 薄膜厚度理論分析 11 2.2 蒸鍍系統之加入局部擋板理論分析及設計 14 2.3 光柵方程式 19 2.4 調整膜厚方法之分析於可見光波段與短波紅外光波段 21 3 第三章 膜層結構設計及膜堆優化 24 3.1 LVF膜層設計條件 24 3.2 光學薄膜製程模擬設計方法 27 3.3 光學薄膜軟體膜堆優化 35 4 第四章 線性漸變帶通濾波分析於可見光波段 39 4.1 模擬膜層相對厚度與位置分析 39 4.2 相對厚度上最佳線性度作用之區段 47 4.3 LVF線性漸變定義相對厚度準則 60 4.4 可見光波段高通濾波及低通濾波LVF之設計 64 4.4.1 可見光波段高通濾波LVF之設計 64 4.4.2 可見光波段低通濾波LVF之設計 89 4.5 分析可見光波段帶通濾波LVF之光譜表現 97 5 第五章 線性漸變帶通濾波分析於短波紅外光波段 115 5.1 短波紅外光波段帶通濾波LVF-SWIR-BPF1-EW之設計 115 5.2 短波紅外光波段帶通濾波LVF-SWIR-BPF2-W之設計 129 5.3 短波紅外光波段帶通濾波LVF-SWIR-BPF3-M之設計 139 5.4 短波紅外光波段帶通濾波LVF-SWIR-BPF4-N之設計 152 6 第六章 帶通線性漸變濾波片對應偵測器之響應 165 6.1 偵測器響應輸出分析於可見光波段 165 6.2 偵測器響應輸出分析於短波紅外光波段 186 7 第七章 結論 205 參考資料 207

    [1] Y. H. Wu, “Development of Design Process for Sencond-Order Linear Variable Filters,” Ph.D dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2015).
    [2] K. Y. Chang, “Fabrication and Theoretical Modeling of Order Sorting Linear Variable Filters,” Ph.D dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2014).
    [3] C. H. Ko, K. Y. Chang and Y. M. Huang, “Theoretical Modeling and Experimental Verification of Linear Variable Filters,” International Journal of Surface and Engineering, Vol. 9, No. 2/3, pp. 216-230 (2015).
    [4] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,新北市 (2012)。
    [5] Software Spectra Inc., The TFCalc, Thin Film Design Software, User’s Manual, Software Spectra Inc., USA (2009).
    [6] C. T. Ma, “Fabrication of Short Wavelength Infrared (900-1700 nm) Linear Variable Filter and Its Performance Measurement and Analysis,” M.S. dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2016).
    [7] C. H. Ko, K. Y. Chang and Y. M. Huang, “Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting,” Optics Express, Vol. 23, No. 4, pp. 5102-5116 (2015).
    [8] L. I. Epstein, “The design of optical filter,” Journal of the Optical Society of America, Vol.42, Issue11, pp. 806-810 (1952)
    [9] J. H. Correia, A. Emadi and R. F. Wolffenbuttel, “UV Bandpass optical filter for microspectrometers, ECS transactions,” Electro Chemical Society, NJ, USA, Vol. 4, No.1, pp. 141-147 (2006)

    [10] R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Optics Letters, Vol. 30, No. 19, pp. 2647–2649 (2005).

    無法下載圖示 全文公開日期 2023/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE