簡易檢索 / 詳目顯示

研究生: 江衍勳
Yen-Shun Chiang
論文名稱: 900-1700 nm波段光譜影像儀之光跡模擬成像分析
Ray Tracing Optical Performance Analysis of an Imaging Spectrometer for 900-1700 nm
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Chun Hsu
吳正信
Cheng-Hsin Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 121
中文關鍵詞: Offner光譜儀半高全寬調制轉移函數聚焦縱深光譜解析度
外文關鍵詞: Hyper spectrometer, Full width at half maximum, Depth of focus, Modulation transfer function, Spectral resolution
相關次數: 點閱:738下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計波段900~1700 nm Offner系統光譜儀,選定所有架構參數,包含光源設計波段、中心波長、繞射階數、光譜成像大小、光柵條紋間距、光源發散角、曲率半徑及透鏡間距,將可以得到整個Offner初始架構模型,再將資料匯至TracePro軟體進行實際光跡追蹤模擬。
    本研究分成偵測器像素數規格1024 × 1024、像素大小1.96 μm × 1.96 μm及偵測器像素數規格80 × 80、像素大小25 μm × 25 μm兩種規格分析,再利用這兩個規格各分析點光源及前級光源,點光源大小為X方向1 nm、Y方向1 nm,前級光源大小為X方向20 μm、Y方向20 μm。
    為了分析波段的成像品質,本研究將波段分成900 nm、1100 nm、1300 nm、1500 nm、1700 nm個別分析,進行光跡追蹤,另外再分別計算出MTF、Pitch、DOF及解析度數據及其圖形。
    本研究針對Offner系統光譜儀,從參數建立、分析流程、模擬呈現、數據分析等步驟,設計出系統大小約為7.00 cm × 18.51 cm × 21.83 cm,並建立一套完整的Offner分析設計流程。

    關鍵字:Offner光譜儀、半高全寬、調制轉移函數、聚焦縱深、光譜解析度


    Design of an Offner system spectrometer used for 900 ~ 1700 nm wavebands is introduced in this thesis. All the system parameters are selected, including the wavebands of light source, the central wavelength, the diffraction orders, spectral imaging size, grating pitch, the divergence angle of the light source, radius of concave mirror and the distance of the lens. The entire Offner system model will be available and data will be exported to the TracePro software for ray tracing simulation.
    This study is divided into the detector pixel number 1024 × 1024, pixel size 1.96 μm × 1.96 μm and the detector pixel number 80 × 80, pixel size 25 μm × 25 μm two specifications. And then two specifications are used to analyze point source and the front-optics source. The size of light source is 1 nm × 1 nm. The size of front source is 20 μm × 20 μm.
    In order to analyze the quality of images, five specific wavelengths are selected to be analyzed individually, Which are 900 nm, 1100 nm, 1300 nm, 1500 nm, and 1700 nm. Ray tracing simulation are used to analyze MTF, Pitch, DOF, resolution data and graphics respectively.
    The system size is approximately 7.00 cm × 18.51 cm × 21.83 cm. This study establishes a design process of complete Offner analysis.

    Keywords: Hyper spectrometer, full width at half maximum, depth of focus, modulation transfer function, spectral resolution

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 XII 符號定義總表 XV 第一章 序論 1 1.1研究背景 1 1.2研究目的 2 1.3本文架構 2 第二章 Offner光譜儀參數設計及建模分析 3 2.1 Offner 模型建立流程 3 2.2 光源大小及偵測器像素規格分析比較 4 2.3 系統參數設定 6 第三章 原理探討及分析 10 3.1 半高全寬(Full Width at Half Maximum, FWHM) 10 3.2 光譜解析度(Spectral Resolution) 11 3.3 調制轉移函數(Modulation Transfer Function, MTF) 11 3.4 聚焦縱深(Depth of Focus, DOF) 13 第四章 模擬結果分析 15 4.1 偵測器1024 × 1024規格作點光源分析(Δx = 1 nm , Δy = 1 nm) 15 4.2 偵測器1024 × 1024規格作前級光源分析(Δx = 20 μm , Δy = 20 μm) 35 4.3 偵測器80 × 80規格作點光源分析(Δx = 1 nm , Δy = 1 nm) 53 4.4 偵測器80 × 80規格作前級光源分析(Δx = 20 μm , Δy = 20 μm) 70 第五章 數據分析 86 第六章 結論 101 參考文獻 103

    [1] D. X. Tao, G. R. Jia, Y. Yuan and H. J. Zhao, “A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer,” Journal of Sensors, Vol. 14, No 12, pp. 23822-23842 (2014).
    [2] 徐百輝,「大地的辨識密碼高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [3] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, pp. 9156-9168 (2006).
    [4] G. Tzagkarakis, W. Charle, P. Tsakalides, “Data compression for snapshot mosaic hyperspectral image sensors,” 24th European Signal Processing Conference, pp. 1558-1562 (2016).
    [5] P. Martins, A. Blanco, P. Crespo, M. F. F. Marques, R. F. Marques, P. M. Gordo, M. Kajetanowicz, G. Korcyl, L. Lopes, J. Michel, M. Palka, M. Traxler, P. Fonte, “Achieving 0.4-mm FWHM spatial resolution with an RPC-based small-animal PET prototype,” IEEE Conference Publications, pp. 1-2 (2013).
    [6] W. Wenbin, Z. Xuejun, “Restoration of Hyperspectral Remote Sensing Image Based on MTF,” 4th International Symposium on Information Science and Engineering, pp. 445-448 (2012).
    [7] A. E. Siegman, Lasers, University Science Books, Sausalito, pp. 664-669.(1986).
    [8] M. Borengasser, W. S. Hungate and R. Watkins, “Hyperspectral Remote Sensing: Principles and Applications,” CRC Press, pp. 18-23 (2002).
    [9] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, pp. 286-310 (2013).
    [10] D. Leger, J. Duffaut and F. Robinet, “MTF Measurement using Spotlight,” Geoscience and Remote Sensing Symposium, Pasadena, pp. 2010-2012 (1994).
    [11] G. Boreman, “Modulation Transfer Funcion in Optical and Electro-optical Systems,” SPIE-The International Society for Optical Engineering, pp. 20-25 (2001).
    [12] E. S. Eid, “Study of Limitations on Pixel Size of Very High Resolution Image Sensors,” Eighteenth National Radio Science Conference, pp. 15-28 (2001).
    [13] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 471-474 (2002).
    [14] K. Tsuchiya, K Nitta, O. Matoba, Y. Awatsuji, “Experimental evaluation of depth of focus by MTF in digital holographic microscopy,” 2013 Conference on Lasers and Electro-Optics Pacific Rim, pp. 1-2 (2013).
    [15] M. Feldman, Nanolithography, Woodhead, Cambridge, pp. 10-11 (2013).
    [16] A. Woodley, T. Chappell, S. Geva, R. Nayak, “Efficient Feature Selection and Nearest Neighbour Search for Hyperspectral Image Classification,” 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-8 (2016).

    無法下載圖示 全文公開日期 2022/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE