簡易檢索 / 詳目顯示

研究生: 邱冠儒
Chiu-Kuan Ju
論文名稱: 900 - 1700 nm波長波段光譜影像儀之光學設計與優化
Optical Design and Optimization of an Imaging Spectrometer for 900 - 1700 nm
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Chun Hsu
吳正信
Cheng-Hsin Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 高光譜儀影像遙測成像斑點繞射極限前級光學系統光譜解析度
外文關鍵詞: Hyperspectral imaging, remote sensing, spot diagram, diffraction limit, spectral resolution
相關次數: 點閱:802下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對飛行高度為6000 ft,飛行速度為 100 kts (51.4 m/s)的飛機,設計一套高光譜儀遙測系統,利用已知的飛行高度與飛行速度,搭配選用的偵測器組件,進行高光譜儀系統設計,利用光學模擬軟體 Code V 建立模型,藉由調變光柵條紋間距、優化系統架構,分析模型的成像 RMS 斑點大小、光柵製程時間、系統大小等規格,建立出符合設計規範的高光譜儀系統。
    成像解析度分析的部分,同時考慮成像斑點解析度、繞射極限解析度以及前級光學解析度進行分析,設計出一套用於機載光譜遙測的Offner高光譜儀系統,適用於波段900 - 1700 nm,成像端展開的光譜長度範圍為12.15 mm,系統像素規格為640 × 512,其每個基本像素大小為25 μm,系統體積大小約為18 cm × 18 cm × 10 cm。
    光譜解析度在1.03 nm至1.31 nm之間,水平方向影像之斑點大小在20.95 μm至25.25 μm之間,垂直方向影像之斑點大小在22.18 μm至32.26 μm之間。
    針對Offner光譜儀空拍遙測系統,考慮空拍飛機飛行高度及飛行速度、偵測器規格、系統大小、製作成本等因素,在Code V中模擬優化,再分析驗證,本研究建立了一套完整的設計流程。


    A remote hyperspectral imaging (HSI) system is designed in this paper for an airplane flying at 6000 feet in altitude and at speed of 100 knots (51.4 m/s). In order to design the HSI optical system, an optical design software, Code V, is used to build up an optical model. The spot size, machine time and system size versus grating pitch and analyzed. The effects of pixel number and pixel size are also taken into account.
    Based on the required resolution of the system, the resolution analysis is divided into three parts, including resolution of spot size, resolution of diffraction limit and resolution of fore optics. It takes a distance of 12.15 mm in the detector plane to cover the whole spectrum range (900 – 1700 nm). The pixel number is 640 × 512 with a pixel size of 25 μm. The system size is roughly 18 cm × 18 cm × 10 cm.
    The resolution of the spectral is between 1.03 nm to 1.31 nm. The sagittal spot size range is from 20.95 μm to 25.25 μm. The meridional spot size range is from 22.18 μm to 32.26 μm.
    This paper sets up a complete design process for a HSI optical system, which considers the flight altitude, the flight speed, detector specifications, system size and fabrication time, after simulating and optimization by Code V.

    致謝 III 摘要 IV Abstract V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究流程 2 1.4 本文架構 3 第二章 光譜儀偵測器組件系統分析 4 2.1 偵測器組件系統分析 4 2.2 前置光學系統放大率(MFO)原理推導 8 2.3 前置光學系統視角(FOVLens)、地面限制最大長度(G.L.)、與狹縫限制最大長度推導(S.L.)原理推導 9 2.4 偵測器視角(FOVSensor)及單位像素對應視角(IFOV) 原理推導 10 2.5 推掃參數(Push Broom Parameter) 11 第三章 系統模擬分析 12 3.1 系統參數設計 12 3.2 系統模型建立 17 3.3 系統模型優化 21 第四章 模型參數調變分析 24 4.1 系統大小分析 24 4.2 元件曲率半徑及大小分析 27 4.3 光柵製程時間 32 4.4 閃耀光柵分析 38 4.5 成像斑點大小 42 4.6 尋找合適光柵間距 46 第五章 解析度分析 49 5.1 A組模型優化前後分析 51 5.2 B組模型優化前後分析 57 5.3 三組模型斑點大小優化前後比較 63 5.4 三組模型MTF圖及繞射極限斑點圖比較 66 5.5 斑點大小光譜解析度分析 69 5.6 繞射極限光譜解析度分析 82 5.7 前級光學系統光譜解析度分析 87 5.8 系統總光譜解析度分析 90 5.9 系統總空間解析度分析 92 5.10 斑點大小影像總解析度分析 94 5.11 漸暈現象(Vignetting)分析 97 第六章 結論 100 參考文獻 101

    [ 1 ] 徐百輝,「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [ 2 ] 李龍正,「高光譜影像儀發展及影像市場前景」,科儀新知,第二十六卷,第二期,第50-57頁 (2004)。
    [ 3 ] R. Serway, and J. Jewett, Physics for Scientists and Engineers with Modern Physics, Cengage Learning, Boston, USA. pp. 1091-1095 (2013).
    [ 4 ] T. Zeniya, H. Watabe, H. Kudo, Y. Hirano, K. Minato, and H. Iida, “Combination of a High Resolution Detector with Small FOV and a Low Resolution Detector with Large FOV for High Resolution and Quantitative SPECT,” IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, pp. 5229-5321 (2008).
    [ 5 ] P. Mouroulis, and M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Optical Engineering, Vol. 39, No. 3, pp. 808-816 (2000)
    [ 6 ] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, No. 20, pp. 9156-9168 (2006).
    [ 7 ] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 460-464 (2002).
    [ 8 ] Y. Hao, J. Yang, X. Jiang, W. Zheng,J. Zhou, H. Zhou, and M. Wang, “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, Shanghai, China, pp. 339-341 (2007).

    [ 9 ] J. H. Wen, L. P. Jia, and P. Ling, “Study On Making High Side-Mode Suppression Ratio Fiber Bragg Grating,” International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, pp. 4014-4016 (2011).
    [ 10 ] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 471-474 (2002).
    [ 11 ] M. Braun, W. W. Roeck, G. D. Gillan, and J. G. Pearce, “RMS Focal Spot : The REAL Focal Spot,” IEEE Transactions on Nuclear Science, Vol. 27, No. 3, pp. 1057-1063 (1980).
    [ 12 ] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 476-481 (2002).
    [ 13 ] J. M. Liu, “Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes” Optics Letters,Vol. 7, No. 5, pp. 196-198 (1982).
    [ 14 ] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New Jersey, pp. 80-107 (2013).
    [ 15 ] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol. 3, pp. 286-310 (2013).

    無法下載圖示 全文公開日期 2022/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE