簡易檢索 / 詳目顯示

研究生: 黃思傑
SIH-JIE HUANG
論文名稱: 渾沌加密系統設計與分析及其FPGA 實現
Design and Analysis of FPGA-Base Chaotic Encryption System
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 楊振雄
Cheng-Hsiung Yang
郭永麟
Yong-Lin Kuo
徐勝均
Sheng-Dong Xu
陳金聖
JIN-SHENG CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 三維渾沌系統互斥或閘像素打散圖片加密FPGA
外文關鍵詞: Three-dimensional chaotic system, Image permutation, image encryption, XOR operation, FPGA
相關次數: 點閱:762下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們設計了一個三維渾沌系統,並經由相圖分析和李亞普諾夫指數
    驗證之渾沌現象,之後並以尤拉方法離散化渾沌系統,並以Altera FPGA DE2-115 實現其渾沌相圖在示波器上顯示。
    我們使用三維渾沌系統作為彩色圖片的加密法。在加密法中,一共有三個特色,第
    一,我們使用了明文圖片的資訊來產生渾沌系統的初始值;第二,針對明文圖片的像素的位置做打亂的動作;第三,我們採用互斥或閘來對打亂完的圖片做運算,目的在於使圖片中的像素值的資訊可以被取消。並且我們將所設計的三維渾沌圖片加密系統實現於Altera FPGA DE2-115,並且可以把FPGA 板上加密完的圖片,拿來用Matlab 做圖片加密效果的分析。在加密安全性分析中,我們採用了,直方圖析、相關性係數分析、熵值分析和差異性分析。從這些加密安全性分析中,可以看出來,我們所設計的三維渾沌用於彩色圖片的加密法表現出來的效果很好,適合用實際的彩色圖片加密。


    In the thesis scheme, we design a three-dimensional chaotic system and prove thebehavior of chaos by phase portraits and Lyapunov exponent. And, the continuous-time chaoticsystem is transformed into discrete-time chaotic system by Euler’ method. Finally, the discretetimechaotic system is implemented phase portraits on the oscilloscope via Altera FPGA DE2-115.
    A cryptographic system for RGB image security for threedimensional chaotic system is proposed. There are three features in our encryption system. First, we use the information of plaintext image to produce the initial conditions of chaotic system. Second, the image permutation process shuffles the position of pixels in the plaintext image among RGB channels individually. Third, in the diffusion process, the pixels information in the shuffled image are concealed by the XOR operation. And, we implemented the three-dimensional chaotic encryption system via Altera FPGA DE2-115. We can get the cipher image through the FPGA and simulate the image by matlab. In the security analysis such as histogram analysis,
    correlation coefficient analysis, information entropy analysis, differential attack analysis (NPCR, UACI) are performed. Results of various security analysis confirm that the proposed
    three-dimensional has high security and it is suitable for practical RGB image encryption.

    摘要i Abstract ii 誌謝 iii List of Figure vi List of Table xii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Motivation and Purpose 2 1.3 Literature Review 3 1.4 Research Method 5 Chapter 2 Nonlinear Dynamics Analysis of the 3D Chaotic System 9 2.1 Introduction to Chaotic System 9 2.2 Chaotic System Design 9 2.2.1 Formulation of the Simple Model 10 2.3 Chaotic System Analysis 13 2.3.1 Phase Portrait of the chaotic system 13 Chapter 3 FPGA Implementation of 3D Chaotic System 17 3.1 System Discretization 17 3.2 Implementation of chaotic system using Verilog coding 21 3.3 Simulation 24 3.3.1 Modelsim Implementation 24 3.3.2 Phase Portrait Implementation via Altera FPGA DE2-115 25 Chapter 4 Image Encryption with Chaotic System 29 4.1 Encryption Algorithm Processing 29 4.1.1 The generation of pseudorandom number sequences 29 4.1.2 Image Permutation 31 4.1.3 Image Diffusion 36 4.1.4 Encryption process 37 4.2 FPGA-Based Hardware System for Image Encryption Implementation 4.2.1 Hardware of Encryption Structure 41 Chapter 5 Image Encryption with Chaotic System Security Analysis46 5.1 Histogram Analysis 46 5.2 Correlation Coefficient Analysis 51 5.3 Information Entropy Analysis 69 5.4 Differential Attack Analysis 71 5.4.1 NPCR Analysis 71 5.4.2 UACI Analysis 74 Chapter 6 77 6.1 Conclusion 77 6.2 Future Work 78 Reference 79

    [1] 周洪波、李吉生、趙曉波,輕鬆讀懂物聯網-技術、應用、標準和商業模式,博碩文化
    [2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021
    White Paper, 2016.
    [3] R. Matthews, “On the derivation of a chaotic encryption algorithm,” Cryptologia, vol.13,
    no. 1, pp.29-42, 1989.
    [4] M. Kumar, P. Powduri, A. Reddy, “An RGB image encryption using diffusion process
    associated with chaotic map,” Journal of Information Security and Applications, vol. 21,
    pp. 20-30, 2015.
    [5] X. Wang, l. Teng, X. Qin, “A novel colour image encryption algorithm based on chaos,”
    Signal Processing, vol. 92, no. 4, pp. 1101-1108, 2012.
    [6] Y. Zhou, W. Cao, C. L. P. Chen, “Image encryption using binary bitplane,” Signal
    Processing, vol. 100, pp. 197-207, 2017.
    [7] B. Schneier, “Applied Cryptography: protocols, algorithms, and source code in C,” John
    Wiley & Sons, Inc, 1996.
    [8] H. J. Gao, Y. S. Zhang, S. Y. Liang, D. Q. Li, “Chaos solitons fractals,” no. 29, vol. 393,
    2006.
    [9] T. Gao, Z. Chen, “A new image encryption algorithm based on hyper-chaos,” Physics
    Letters A, vol. 372, no. 4, pp. 394–400, 2008.
    [10] G. Chen, Y. Mao, C. K. Chui, “A symmetric image encryption based on 3D chaotic cat
    maps,” Chaos, Solitons & Fractals, vol. 21 no. 3, pp. 749-761, 2004.
    [11] L. Wang, H. Song, P. Liu, “A novel hybrid color encryption algorithm using two complex
    chaotic systems,” Optics and Lasers in Engineering, vol. 77, pp. 118-125, 2016.
    [12] S. Bojanic, G. Caffarena, S. Petrovic, O. N. Taladriz, “FPGA for pseudorandom generator
    cryptanalysis,” Microprocessors and Microsystems, vol. 30 no. 2, pp.63-71, 2006.
    [13] X. Fang, Q. Wang, C. Guyeux, J M. Bahi, “FPGA acceleration of a pseudorandom number
    generator based on chaotic iterations,” Journal of Information Security and Applications,
    vol. 19, no. 1, pp. 78-87, 2014.
    [14] Q. Wang, S. Yu, C. Li, “Theoretical design and FPGA-base implementation of highdimensional
    digital chaotic systems,” IEEE Transactions on Circuits and Systems, vol. 63,
    no. 3, 2016.
    [15] C. Shen, S. Yu, J. Lü, G. Chen, “Designing hyperchaotic system with any desired number
    of positive lyapunov exponents via a simple model,” IEEE Transactions on Circuits and
    System, vol. 61, no. 8, 2014.
    [16] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol.
    20, no. 2, pp. 130-141, 1963.
    [17] J. Banks, “Chaos for induced hyperspace maps,” Chaos, Solition and Fractals, vol. 25, pp.
    681-685, 2005.
    [18] O. E. Rössler, “An equation for continuous chaos,” Physics Letters, vol. 57, no.5, pp. 397-
    398, 1976.
    [19] L. A. Jackson, “A chaotic attractor from Chus’s circuit,” IEEE Transactions on Circuits
    System, vol. 31, no. 12, pp. 1055-1053, 1984.
    [20] T. Ueta, G. Chen, “Bifurcation analysis of Chen’s circuit,” International Journal of
    Bifurcation and Chaos, vol. 10, no. 8, pp. 1917-1931, 2000.
    [21] J. Lu, G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and
    Chaos, vol. 12, no. 3, pp. 659-661, 2002.
    [22] S. Ye, K. T. Chau, “Chaoization of DC motors for industrial mixing.” IEEE Transaction
    on Industrial Electronics, vol. 54, no. 4, pp. 2024-2032, 2007.
    [23] R. Tchitnga, T. Nguazon, F. Louodop, P. H., J. A. C. Galas, “Chaos in a Single Op-Amp-
    Based Jerk Circuit: Experiments and Simulations,” IEEE Transactions on Circuits and
    Systems – II: Express Briefs, vol. 63, no. 3, pp. 239-243, 2016.
    [24] Z. Lin, S. Yu, J. Lu, S. Cai, G. Chen, “Design and ARM-Embedded Implementation of a
    Chaotic Map-Based Real-Time Secure Video Communication System,” IEEE
    Transactions on Circuits and Systems for Video Technology, vol. 25, no. 7, pp. 1203-1216,
    2016.
    [25] D. Souza, R.M., Y. B. Yam, M. Kardar, “Sensitivity of ballistic deposition to
    pseudorandom number generators,” Physical Review E, vol. 57, no. 5, 1998.
    [26] B. Norouzi, S. Mirzakuchaki, “A fast color image encryption algorithm based on hyperchaotic
    systems,” Nonlinear Dynamics, vol. 78, no. 2, pp. 995-1015, 2014.
    [27] M. Kumar, P. Powduri, A. Reddy, “An RGB image encryption using diffusion process
    associated with chaotic map,” Journal of Information Security and Applications, vol. 21,
    pp. 20-30, 2015.
    [28] H. Hsiao, J. Lee, “Color image encryption using chaotic nonlinear adaptive filter,” Signal
    Processing, vol. 117, pp.281-309, 2015.
    81
    [29] Y. Wu, J. Noonan, S. Agaian, “NPCR and UACI randomness tests for image encryption,”
    Cyber journals: multidisciplinary journals in science and technology, Journal of Selected
    Areas in Telecommunications (JSAT), pp.31-38, 2011.
    [30] 林震岩, 多變量分析:SPSS 的操作與應用,智勝。

    無法下載圖示 全文公開日期 2022/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE