簡易檢索 / 詳目顯示

研究生: 黃翰祥
Han-Hsiang Huang
論文名稱: 一類史都華平台之設計與實現
Design and Implementation of a Class of Stewart Platforms
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 石大明
Ta-Ming Shih
蔡明忠
Ming-Jong Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 電腦輔助設計史都華平台
外文關鍵詞: Computer-aided design (CAD), Stewart platform
相關次數: 點閱:758下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計與實現一類史都華平台,希望藉由此改良後的機械結構與裝配方式,減少其製造難度,並利於其延伸的應用。首先,使用電腦輔助設計完成模型的建置;其次,進行相關機件的運動分析;然後,藉由快速成型技術完成原型的建置。
    目前廣泛使用之三軸穩定器等雲台,雖可即時提供旋轉角度的補償,但無法做平移方向的補償。本研究利用史都華平台的並聯式機構特性,產生六個自由度之運動,將可以彌補大多數三軸穩定器無法做平移補償的機構特性。


    In this research, a class of Stewart platforms is designed and implemented. By the improved mechanical structures and assembly methods, the difficulties in the manufacturing of Stewart platforms can be alleviated and the applications can thus be easily extended. First, Computer-Aided Design (CAD) is applied to completing the model building. Second, the kinematics of related parts is analyzed. Finally, the prototype is established by the rapid prototyping.
    Presently, the widely used three-axis stabilizer can real-time compensate the offset angle; however, its compensation cannot be carried out in parallel directions. In this research, the mechanical characteristic of a type of parallel robot is adopted to create 6-DOF motion so that the above stated disadvantage can be conquered.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第1章 緒論 1 1.1 研究背景 1 1.2 史都華平台簡介 2 1.3 史都華平台發展 9 1.4 本文主要貢獻 10 1.5 章節說明 11 第2章 史都華平台之機構原理 12 2.1機構類型介紹 12 2.2 運動原理及數學模型 13 2.2.1 工作空間分析方法 13 2.2.2 結構空間定義 14 2.2.3 數學模型 15 2.3 懸臂角度推導 19 第3章 史都華平台之機構設計 28 3.1 機構設計流程 28 3.2電機與硬體選用 30 3.2.1伺服馬達 31 3.2.2硬體選用 32 3.3平台機構設計 34 3.3.1懸臂設計 34 3.3.2球關節機件架構 37 3.3.3基座架構設計 41 3.3.4移動板及連接關節 48 3.3.5組裝驗證 51 第4章 控制系統之實現 55 4.1感測器 55 4.1 .1 加速度計 57 4.1 .2 陀螺儀 58 4.2控制器 59 4.3 LabVIEW控制介面 60 4.4 感測數據擷取 67 第5章結論與未來研究方向 69 5.1結論 69 5.2未來研究方向 69 參考文獻 71

    [1] D. Stewart, “A platform with six degrees of freedom,” Inst. Mech. Engr., London, UK, vol. 180, no. 15, pp. 371-386, 1965.
    [2] E. F. Fichter, “A Stewart platform-based manipulator: general theory and practical construction,” The Int. J. Robotics and Research,” vol. 5, no. 2, pp. 157-186, 1986.
    [3] J. P. Merlet, “Parallel Manipulators, Part 1: Theory,” Technical report 646, INRIA, 1987.
    [4] J. P. Merlet, “Designing A Parallel robot for a specific workspace,” Technical report 646, INRIA, 1995.
    [5] K.-M. Lee and D.-K. Shah, “Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator,” IEEE Journal of Robotics and Automation, vol. 4, no.3, pp. 354-360, 1988.
    [6] R. L. Williams II and C.F. Reinholtz, “Closed-form workspace determination and optimization for parallel robot mechanisms,” ASME Biennial Mechanism Conf., Florida, American, pp. 341-351. Dec. 3-5, 1988.
    [7] D.-Y. Jo and E. Huag, “Workspace analysis of closed loop mechanism with unilateral constraints,” ASME Design Automation Conf., Montreal, Canada, pp. 53-60. Sep. 17-20, 1989.
    [8] T. Arai, K. Cleary, and T. Nakamura, “Design, analysis and construction of a prototype parallel link manipulator,” IEEE Int. Workshop on Intelligent Robot and Systems, Ibaraki, Japan, vol. 1, pp.205-212. July 3-6, 1990.
    [9] C. Gosselin, “Determination of the workspace of 6-dof parallel manipulators,” J. of Mech. Design, vol. 112, no. 3, pp.331-336, 1990.
    [10] D.-I. Kim, W.-K. Chung, and Y.-Youm, “Geometrical approach for the workspace of 6-dof parallel manipulators,” IEEE Int. Conf. Robotics and Automation, Albuquerque, New Mexico, pp. 2986-2991, 1997.
    [11] J. P. Merlet, C. Gosselin, and N. Mouly, “Workspaces of planar parallel manipulators,” Mechanism and Machine Theory, vol. 33, pp. 7-20, 1998.
    [12] J. P. Merlet, “Determination of the orientation workspace of planar parallel manipulators,” Journal Intelligent and Robotic Systems, vol. 13, pp. 143-160, 1995.
    [13] J. P. Merlet, “Design a parallel robot for a specific workspace,” Technical report 464, INRIA, 1995.
    [14] J. P. Merlet, “Design a parallel manipulator for a specific workspace,” Int. Journal Robotic Research, vol. 16. pp, 545-556, 1997.
    [15] M. G. Mohammed and J. Duffy, “A direct determination of the instantaneous kinematics od fully parallel manipulators,” ASME Journal of Mechanisms, Transmission, and Automation in Design 107, 226-229, 1985.
    [16] F. Behi, “Kinematic analysis for a six-degree-of-freedom 3-PRPS parallel mechanism,” IEEE Journal of Robotics and Automation, vol. 4, no.5, pp, 561-565, 1988.
    [17] L. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Transactions on Industrial Electronic, vol. 40, pp. 282-293, 1993.
    [18] Moog Panorama Industrial. http://www.moog.com.br/subpage_14.html
    [19] P. Ji and H.-T. Wu, “A closed-form forward kinematics solution for the 6-6 Stewart platform,” IEEE Transactions on Robotics and Automation, vol. 17, pp. 522-526, 2001.
    [20] H.-M. Lin and J. E. McInroy, “Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platforms,” IEEE Transactions on Control Systems Technology, vol. 11, pp.267-272, 2003.
    [21] Y. Cheng, G.-X. Ren and S.-L. Dai, “Vibration control of Gough-Stewart platform on flexible suspension,” IEEE Transaction on Robotics and Automation, vol. 19, pp. 489-493, 2003.
    [22] F. Jafari and J. E. McInroy, “Orthogonal Gough-Stewart platforms for micromanipulation,” IEEE Transaction on Robotics and Automation, vol. 19, pp. 595-603, 2003.
    [23] W. Khalil and S. Guegan, “Inverse and direct dynamic modeling of Gough-Stewart robots,” IEEE Transaction on Robotics, vol. 20, pp. 754-762, 2004.
    [24] X.-S. Gao, D.-L. Lei, Q.-Z. Liao, and G-F. Zhang, “Generalized Stewart-Gough platforms and their direct kinematics,” IEEE Transaction on Robotics, vol. 21, pp. 141-151, 2005.
    [25] Y.-X. Su, B.-Y. Duan, C.-H. Zheng, Y.-F. Zhang, G.-D. Chen, and J.-W. Mi, “Disturbance-rejection high-precision motion control of a Stewart platform,” IEEE Transactions on Control Systems Technology, vol. 22, pp. 364-374, 2004.
    [26] Y. Yi, John E. McInroy and F. Jafari, “Generating classes of locally orthogonal Gough-Stewart platforms,” IEEE Transaction on Robotics, vol. 21, pp. 812-820, 2005.
    [27] J. E. McInroy and F. Jafari, “Finding symmetric orthogonal Gough-Stewart platforms,” IEEE Transaction on Robotics, vol. 22, pp. 880-889, 2006.
    [28] Y.-J. Lu, W.-B. Zhu, and G.-X. Ren, “Feedback control of a cable-driven Gough-Stewart platform,” IEEE Transaction on Robotics, vol. 22, pp. 198-202, 2006.
    [29] N. Andreff and P. Martinet, “Unifying kinematic modeling, identification, and control of a Gough-Stewart parallel robot into a vision-based framework,” IEEE Transaction on Robotics, vol. 22, pp. 1077-1086, 2006.
    [30] C. S. Ukidve, J. E. McInroy, and F. Jafari, “Using redundancy to optimize manipulability of Stewart platforms,” IEEE Transaction on Mechatronics, vol. 13, pp. 475-479, 2008.
    [31] O. Tahri, Y. Mezouar, N. Andreff, and P. Martinet, “Omnidirectional visual-servo of a Gough-Stewart platform,” IEEE Transaction on Robotics, vol. 25, pp. 178-183, 2009.
    [32] Z.-L. Wang, J.-J. He, and H. Gu, “Forward kinematics analysis of a six-degree-of-freedom Stewart platform based on independent component analysis and Nelder-Mead algorithm,” IEEE Transactions on Systems, Man, and Cubernetics, part A: Systems and Humans, vol. 41, no. 41, pp. 589-597, 2011.
    [33] S.-H. Chen and L.-C. Fu, “Output feedback sliding mode control for a Stewart platform with a nonlinear observer-based forward kinematics solution,” IEEE Transactions on Control Systems Technology, vol. 21, no. 1, pp. 176-185, 2013.
    [34] J. Borras and F. Thomas, “On the primal and dual forms of the Stewart platform pure condition,” IEEE Transactions on Robotics, vol. 28, no. 6, pp. 1205-1215, 2012.
    [35] M. Hebsacker, T. Treib, O. Zirn, and M. Honegger, “Hexaglide 6 dof and triaglide 3 DOF parallel manipulators,” Position Paper PKM at the ETHZ ich and Mikron SA
    [36] M. Hebsacker, A. Codourey, and E. Burdet, “Adaptive control of the Hexaglide, a 6 DOF parallel manipulator,” IEEE international Conference on Robotics and Automation, pp. 543-548, 1997.
    [37] Y. K. Byun, “Analysis of a novel 6-dof, 3-PPSP of parallel manipulator,” The International Journal of Robotics Research, vol. 16, no. 6, pp. 859-872, 1997.
    [38] B.-H. Ronen, S. Moshe, and D. Shlomo, “Kinematics, dynamics and construction of a planarly actuated parallel robot,” Robotics and Computer-Integrated Manufacturing, vol. 14, no. 2, pp. 163-172, 1998.
    [39] G. Lebert, L. Liu, and C.-N. Li, “Dynamic analysis and control of a Stewart platform manipulator,” Journal of Robotic Systems vol. 10, no. 5, pp. 629-655, 1993.
    [40] J. Wang and C. Gosselin, “A new approach for the dynamic analysis of parallel manipulators,” Multibody System Dynamics, vol. 2, no. 3, pp. 317-334, 1998.
    [41] M.-J. Liu, C.-X. Li, and C.-N. Li, “Dynamic analysis of the Gough-Stewart platform manipulator,” IEEE Transaction on Robotic and Automation, vol. 16, no. 1, pp. 94-98, 2000.
    [42] J. P. Merlet, “Singular configurations of parallel manipulators and Grassmann geometry,” Int. J. Robotics Research, vol. 8, no. 5, pp. 45-56. 1989.
    [43] W. Q. D. Do and D. C. H. Yang, “Inverse dynamic analysis and simulation of a platform type of robot,” Journal of Robotic Systems, vol. 5, no. 53, pp. 209-227, 1998.
    [44] T.-R. Kane and D. A. Levinson, “The use of Kane’s dynamical equations in robotics,” The International Journal of Robotics Research, vol. 2, no. 3, 1983.
    [45] 曹修銓,「使用六自由度史都華平台驗證火箭動態感測系統」,國立交通大學機械工程學系碩士論文,2013。
    [46] Arduino UNO Rev 3. https://store.arduino.cc/usa/arduino-uno-rev3
    [47] R. S. Stoughton and T. Arai, “A modified Stewart platform manipulator with improved dexterity,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2, pp. 166-173, 1993.
    [48] M. Almonacid, R. J. Saltaren, R. Aracil, and O. Reinoso, “Motion planning of a Climbing Parallel Robot,” IEEE Transactions on Robotics and Automation, vol. 19, no. 3, pp. 485-489, 2003.
    [49] K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Transactions on industrial electronics, vol. 40, no. 2, pp. 282-293, 1993.
    [50] K. Bai and K.-M. Lee, “Direct field-feedback control of a ball-joint-like permanent-magnet spherical motor,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 975-986, 2014.
    [51] Analog Device Inc., “ADXL345 Digital Accelerometer Datasheet,” 2015.

    無法下載圖示 全文公開日期 2022/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE