簡易檢索 / 詳目顯示

研究生: 易英戈
I - Gede Darko Pancev
論文名稱: 輕型無線嵌入式網路平臺與受限制應用協議之設計和實現
Design and Implementation of a Lightweight Wireless Embedded Internet Platform With the Constrained Application Protocol
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 石大明
SHIH,TA-MING
副教授
none
郭鴻飛
Hung-Fei Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 無線嵌入式網路物聯網輕型無線嵌入式裝置受限制應用協議
外文關鍵詞: Wireless Embedded Internet, Internet of Things, Lightweight Wireless Embedded Devices, Constrained Application Protocol
相關次數: 點閱:554下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近二十年來網路蓬勃發展,已從最原始的小型學術網路發展成為當今十四億人口日常生活都在使用的全球網路。隨著路由器、伺服器和個人電腦於網路通訊發展的成熟,另一個網際網路的革命「物聯網 (Internet of Things, IoT)」則已正在進行中。物聯網背後的意義在於未來所有嵌入式裝置都將能被以IP (Internet Protocol) 驅動,變成網際網路內可整合的一部分,而物聯網的大小已經被估計大到可能約有百萬兆的裝置可以IP 來驅動。由於使用物聯網後將能達成較優良的環境監控、能源節約、智慧電網、製造工廠管理、物流管理、照護系統、和智慧型建築等,所以其影響將會是非常重大的。
    然而,物聯網議題中最大可能的成長之一,將來自於目前都尚未被IP驅動的低功率嵌入式裝置。「無線嵌入式網際網路 (Wireless Embedded Internet)」便因應而生,其可將具有受限處理能力的低功率無線嵌入式裝置加入於物聯網內。到目前為止,只有功能強大的嵌入式設備和網路可以自然地與物聯網連結。若是直接和傳統的IP網路進行資料傳輸,則需要透過很多通訊網路協定,和一套作業系統才能處理和維護。而這些條件實際上對於將物聯網連結於具有強而有力的處理器、連結於具有完整TCP/IP架構網路的作業系統、和連結於可被IP驅動的裝置等都會造成限制。
    本研究的主要貢獻在於:藉由設計與實作一輕型無線嵌入式平台,用來探討未來物聯網網路可靠的方法。此平台包含了下列特性:低功率消耗、記憶體受限制、小型、低成本IP驅動無線嵌入式裝置、和受限制應用協議。因此,本研究設計了一類嵌入式裝置具有「低功率無線連結 (Low Power Wireless Connectivity)」特性,我們簡稱其為Lowvy。最新版本的IP標準IPv6也在具有低功率消耗的Lowvy無線嵌入式裝置中成功地被使用,使得點對點IP網路和廣泛的無線嵌入式物聯網應用都能成功。實驗測試了Lowvy無線嵌入式平台的網際網路整合,經由設計的一個在線環境監控系統,其可以週期性地將環境監控應用中所量測到的結果(例如包括:溫度、溼度、空氣品質、周遭的光線) 發佈於Ubidots雲的服務上。因此,藉由這套系統,我們將可以在世界上任何地方經由網路的連結來使用這類應用。


    The Internet has been a great success over the past 20 years, growing from small academic networks into global networks used regularly by over 1.4 billion people. Another Internet revolution, known as Internet of Things (IoT), has been going on with the maturing of the net communication in routers, servers and personal computers. The vision behind the IoT is that embedded devices are universally becoming IP (Internet Protocol) enabled and an integral part of Internet. The scale of the IoT has already been estimated to be immense, with the potential of trillion of devices becoming IP-enabled. The impact of IoT will be significant with the promise of better environment monitoring, energy saving, smart grids, more efficient factories, better logistic, better healthcare systems, and smart homes.
    However, one of the greatest potential growth of IoT comes from low power embedded devices that until now have not been IP-enabled. A new paradigm, known as Wireless Embedded Internet, is needed to enable low-power wireless devices with limited processing capabilities to participate in the IoT. Until now only powerful embedded devices and networks are able to natively participate in the Internet. Direct communication with traditional IP networks requires many Internet protocols, and an operating system to deal with complexity and maintainability. These requirements have in practice limited the IoT linking to devices with a powerful processor, an operating system with a full TCP/IP stack, and an IP-capable communication link.
    The main contribution of this study is to investigate a reliable way of future IoT networking by designing and implementing a lightweight wireless embedded platform, which equips with the characteristics of low power consumption, memory-constrained, small size, low cost IP-enabled wireless embedded device and the constrained application protocol. As a result, the embedded device with Low Power Wireless Connectivity, called “Lowvy,” was born, and a newest version of IP standard called IPv6 was successfully enabled on Lowvy wireless embedded devices with low-power consumption, thus enabling end-to-end IP networking, and wide range of wireless embedded IoT applications. Internet integration of Lowvy wireless embedded platform has been tested by creating an online environment-monitoring system which periodically published the measurement results of environment-monitoring applications (e.g., temperature, humidity, air quality, and ambient light) to Ubidots Cloud service. Therefore, by the designed system, we are able to access the applications from anywhere in the world through Internet connectivity.

    中文摘要 ............................................................. i Abstract ............................................................ ii Acknowledgments ..................................................... iii Table of Contents ................................................... iv List of Figures ..................................................... vi List of Tables ...................................................... ix Chapter 1 Introduction .............................................. 1 1.1 Background and Motivation ................................... 1 1.2 Objective of the Thesis ..................................... 2 1.3 Thesis Outline .............................................. 3 Chapter 2 Standard and Protocols .................................... 4 2.1 Wireless Sensor Networks (WSNs) ............................. 4 2.1.1 Wireless technology in industrial network ................... 6 2.2 6LoWPAN Standard ............................................ 7 2.2.1 Architecture ................................................ 7 2.2.2 Protocol Stack .............................................. 9 2.2.3 Link layers ................................................. 11 2.2.4 IP addressing ............................................... 13 2.2.5 Header format ............................................... 14 2.2.6 Fragmentation and reassembly ................................ 16 2.2.7 Routing ..................................................... 18 2.2.8 IPv4 interconnectivity ...................................... 20 2.2.9 Internet integration ........................................ 23 2.3 Application protocols with 6LoWPAN .......................... 24 2.3.1 Design issues ............................................... 26 2.3.2 The constrained application protocol (CoAP) ................. 28 Chapter 3 Elements of the Network ................................... 30 3.1 Hardware platform ........................................... 30 3.1.1 Lowvy wireless embedded device .............................. 31 3.1.2 Lowvy sensor shield ......................................... 35 3.2 Development environment ..................................... 38 3.2.1 Contiki Operating System .................................... 38 3.2.2 6LoWPAN Border Router ....................................... 42 Chapter 4 Experimental Setup ........................................ 45 4.1 Initial network setup ....................................... 45 4.2 Environment setup and create an application process ......... 46 4.2.1 Environment setup and create an application process ......... 46 4.3 Lowvy experimental setup .................................... 56 4.3.1 Received Signal Strength Indicator (RSSI) measurement ....... 57 4.3.2 Power consumption measurement ............................... 57 4.3.3 Sensors Integration ......................................... 58 4.4 Internet integration application with 6LoWPAN ............... 59 Chapter 5 Experimental Results and Discussions ...................... 61 5.1 Received Signal Strength Indicator (RSSI) measurement results 61 5.2 Power consumption measurement results ....................... 63 5.3 Internet integration application results .................... 65 5.3.1 PING-able over IPv6 network ................................. 65 5.3.2 Access Lowvy as an individual node through web browser ...... 66 5.3.3 Online environment monitoring system results ................ 67 Chapter 6 Conclusion and Future Work ................................ 70 6.1 Conclusion .................................................. 70 6.2 Future work ................................................. 70 References .......................................................... 71

    [1] A. Dunkels and J.-P. Vasseur, Interconnecting Smart Objects with IP, Morgan Kaufmann, Burlington, USA, 2010.

    [2] R. B. Kagade and R. A. Satao, “Enhanced lifetime distributed power saving algorithm in wireless sensor networks,” International Conference on Information Communication and Embedded Systems, Chennai, India, Feb. 27-28, 2014, pp. 1-6.

    [3] M. N. A. Shaon, K. B. Amir, and M. A. Matin, “Power-saving scheduling algorithm for multiple target coverage in wireless sensor networks,” Asia Pasific Conference on Communications, Sabah, Malaysia, Oct. 2-5, 2011, pp. 832-835.

    [4] S. Hu and J. Han, “Power control strategy for clustering wireless sensor networks based on multi-packet reception,” IET Wireless Sensor Systems, vol. 4, no. 3, pp. 122-129, 2014.

    [5] J. Luo, J. Hu, D. Wu, and R. Li, “Opportunistic routing algorithm for relay node selection in wireless sensor networks,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 112-121, 2015.

    [6] C. Na, D. Lu, T. Zhou, and L. Li, “Distributed power control algoritm based on game theory for wireless sensor networks,” Journal of Systems Engineering and Electronics, vol. 18, no. 7, pp. 622-627, 2007.

    [7] J. Heo, J. Hong, and Y. Cho, “Energy aware routing for real-time and reliable communication in wireless industrial sensor networks,” IEEE Trasaction on Industrial Informatics, vol. 5, no. 1, pp. 3-11, 2009.

    [8] L. Catarinucci, D. D. Donno, L. Mainetti, and L. Palano, “An IoT-aware architecture for smart healthcare systems,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 515-526, 2015.

    [9] Y.-S. Shin, K.-W. Lee, and J.-S. Ahn, “Exploring the feasiblity of differentiating IEEE 802.15.4 networks to support health-care systems,” Journal of Communications and Networks, vol. 13, no. 2, pp. 132-141, 2012.

    [10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Journal of Computer Networks, vol. 38, no. 1, pp. 393-422, 2002.

    [11] M. Li and H.-J. Lin, “Design and implementation of smart home control systems based on wireless sensor networks and power line communications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4430-4442, 2015.

    [12] A. Willig, K. Matheus, and A. Wolisz, “Wireless Technology in Industrial Networks,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1130-1151, 2005.

    [13] C. Bormann and Z. Shelby, 6LoWPAN: The Wireless Embedded Internet, Wiley, United Kingdom, 2009.

    [14] Z. Sheng, H. Wang, C. Yin, and X. Hu, “Lightweight management of resource-constrained sensor devices in internet of things,” IEEE Internet of Things Journal, vol. 2, no. 5, pp. 402-411, 2015.

    [15] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An applicaton protocol for billions of tiny internet nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62-67, 2012.

    [16] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for Contiki,” Technical Report on Contiki, Sweden, 2011.

    [17] H. S. K. H. a. R. H. S. Raza, “Lithe: lightweight secure CoAP for the Internet of Things,” IEEE Sensor Journal, vol. 13, no. 10, pp. 3711-3720, 2013.

    [18] J. Ma, M. Gao, Q. Zhang, and L. M. Ni, “Energy-efficient localized topology control algorithms in IEEE 802.15.4 based sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 5, pp. 711-720, 2007.

    [19] K. A. Agha, M.-H. Bertin, T. Dang, and A. Guitton, “Which wireless technology for industrial wireless sensor networks? the development of OCARI technology,” IEEE Transaction on Industrial Electronics, vol. 56, no. 10, pp. 4266-4278, 2009.

    [20] X. Cao, J. Chen, Y. Cheng, X. Shen, and Y. Sun, “An analytical MAC model for IEEE 802.15.4 enabled wireless networks with periodic traffic,” IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5261-5273, 2015.

    [21] T. R. Park and M. J. Lee, “Power saving algorithms for wireless sensor networks on IEEE 802.15.4,” IEEE Communications Magazines, vol. 46, no. 6, pp. 148-155, 2008.

    [22] S. Kulkarni, A. Lyer, and C. Rosenberg, “An address-light, integrated MAC and routing protocol for wireless sensor networks,” IEEE Transaction on Networking, vol. 14, no. 4, pp. 793-806, 2006.

    [23] A. Dunkels, “The ContikiMAC radio duty cyling protocol,” Techincal Report on Swedish Institue of Computer Science , Sweden, 2011.

    [24] W. Guo, J. Li, G. Chen, Y. Niu, and C. Chen, “A PSO-optimized real-time fault tolerant task allocation algorithm in wireless sensor networks,” IEEE Transaction on Parallel and Distributed Systems, vol. 26, no. 12, pp. 1045-3249, 2015.

    [25] M. R. Palattela, N. Accettura, X. Vilajosana, and T. Watteyne, “Standarized protocol stack for the Internet of (important) Things,” IEEE Communications Surveys & Tutorial , vol. 15, no. 3, pp. 1389-1406, 2012.

    [26] A. A. Fuqaha, M. Guizani, M. Mohammadi, and M. Aledhari, “Internet of Things: a survey on enabling technologies, protocols, and applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

    [27] G. Montenegro, N. Kushanalnagar, J. Hui, and D. Culler, Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC4944, Internet Engineering Task Force, USA, 2007.

    [28] J. Postel, User Datagram Protocol, RFC768, Intenet Engineering Task Force, USA, 1980.

    [29] A. Conta, S. Deering, and M. Gupta, Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification, RFC4443, Internet Engineering Task Force, USA, 2006.

    [30] J.-Y. Um, J.-S. Ahn, and K.-W. Lee, “Evaluation of the efects of a grouping algorithm on IEEE 802.15.4 networks with hidden nodes,” Journal of Communications and Networks, vol. 16, no. 1, pp. 81-91, 2014.

    [31] N. Karowski, A. C. Viana, and A. Wolisz, “Optimized asynchronous multichannel discovery of IEEE 802.15.4-based wireless personal area networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 10, pp. 1972-1985, 2013.

    [32] P. D. Marco, P. Park, C. Fischione, and K. H. Johansson , “Analytical modeling of multihop IEEE 802.15.4 networks,” IEEE Transactios on Vehicular Technology, vol. 61, no. 7, pp. 3191-3208, 2012.

    [33] M. Khanafer, M. Guennoun, and H. T. Mouftah, “A survey of beacon-enabled IEEE 802.15.4 MAC protocols in wireless sensor networks,” IEEE Communication Surveys & Tutorials, vol. 16, no. 2, pp. 856-876, 2013.

    [34] C.-H. Wang, C.-T. Chou, P. Lin, and M. Guizani, “Performance evaluaton of IEEE 802.15.4 nonbeacon-enabled mode for internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3150-3159, 2015.

    [35] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Trasnsmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC4944, Internet Engineering Task Force, USA, 2007.

    [36] R. Hinden and S. Deering, IP Version 6 Addressing Architecture, RFC4291, Internet Engineering Task Force, USA, 2006.

    [37] J. Hui and P. Thubert, Compression Format for IPv6 Datagrams in 6LoWPAN Networks, Internet Engineering Task Force, USA, 2009.

    [38] B. Carpenter and K. Moore, Connection of IPv6 Domains via IPv4 Clouds, RFC3056, Internet Engineering Task Force, USA, 2001.

    [39] J. Postel, Transmission Control Protocol, RFC0793, Internet Engineering Task Force, USA, 1981.

    [40] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of Things: a survey of existing protocols and open research issues,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1294-1312, 2015.

    [41] S. Cirani, L. Davoli, G. Ferrari, and R. Leone, “A scalable and self-configuring architecture for service discovery in the Internet of Things,” IEEE Internet of Things Journal, vol. 1, no. 5, pp. 508-521, 2014.

    [42] B. C. Villaverde, R. D. P. Alberola, A. J. Jara, and S. Fedor, “Service discovery protocols for constrained machine-to-machine communications,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 41-60, 2013.

    [43] A. Riker, E. Cerqueira, M. Curado, and E. Monteiro, “A two-tier adaptive data aggregation approach for M2M group-communication,” IEEE Sensors Journal, vol. 16, no. 3, pp. 823-835, 2015.

    [44] Z. Shelby, K. Hartke, and C. Borman, The Constrained Application Protocol (CoAP), RFC7252, Internet Engieering Task Force, USA, 2014.

    [45] S.-C. Son, N.-W. Kim, B.-T. Lee, and C. H. Cho, “A time synchronization technique for coap-based home automation systems,” IEEE Transactions on Consumer Electronics, vol. 62, no. 1, pp. 10-16, 2016.

    [46] A. Dunkels, “Full TCP/IP for 8-bit architectures,” International Conference on Swedish Institue of Computer Science, Sweden, 2011.

    [47] A. Dunkels, J. Alonso, and T. Voigt, “Making TCP/IP viable for wireless sensor networks,” International Conference on Swedish Institute of Computer Science, Sweden, 2011.

    [48] S. Duquennoy, F. Osterlind, and A. Dunkels, “Lossy Links, Low Power, High Throughput,” Technical Report on Contiki, Sweden, 2011.

    [49] L. Mainetti, V. Mighali, and L. Patrono, “A software architecture enabling the web of things,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 445-454, 2015.

    QR CODE