簡易檢索 / 詳目顯示

研究生: 馬桭珽
Chen-Ting Ma
論文名稱: 短波紅外(900-1700nm)線性漸變濾波片之製造及量測與分析
Fabrication of Short Wavelength Infrared (900-1700 nm) Linear Variable Filter and Its Performance Measurement and Analysis
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 線性漸變濾波器光譜儀蒸鍍光學薄膜穿透頻譜圖
外文關鍵詞: Linear variable filter, Thin film, Transmission spectrum, Spectrometer, Evaporation.
相關次數: 點閱:607下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將採用二階線性漸變濾波器(second-order Linear Variable Filter, LVF) 通用設計流程開發技術,以能適用於市面上大部分之蒸鍍機台,與模型參數自由調控的開放參數設計特點,針對短波紅外光波段(900-1700 nm)進行濾光元件之製程開發與驗證。
    本研究將利用LVF通用設計流程,於目標製程使用蒸鍍機台相關之蒸鍍腔內配置的幾何參數、製程參數、結構參數及使用基板模型、擋板高度設計…等,初步模擬基板上之膜厚輪廓及薄膜分佈。接著使用於業界廣為使用之光學鍍膜設計軟體,以低通對稱膜堆設計原則進行薄膜結構設計。本研究之設計目的為應用於短波紅外光譜儀,實際架設於光譜儀偵測器前,透過光譜儀內部InGaAs偵測器之光譜特性,進行膜層結構設計定義光波段範圍,接著分析線性漸變濾波片之線性特質,針對調整不同膜層相對厚度,能呈現對應之穿透光譜線性漸變表現,得知相對應不同位置之臨界波長λ_C,進行模擬濾光元件之穿透頻譜分析。
    為達本研究之驗證線性漸變濾波片特性,蒸鍍後之濾光元件以探針式表面輪廓儀進行量測薄膜輪廓分佈,討論其相對厚度75 % - 25 %之吻合度與線性度,及實際製程於濾光元件之擋板高度與線性漸變寬度關係,與進行光譜量測,取得於濾光元件不同位置之穿透頻譜圖,與本研究之初步模擬數據進行比較。
    另利用本研究之設計基礎,針對兩台不同重點波段的近紅外光譜儀,分別進行兩種不同波段應用之LVF參數設計,依實際案例匹配成功之濾光元件驗證了本研究之製程開發完整性。


    Development of fabrication and verification for a second-order linear variable filter (LVF) used in short wavelength infrared (SWIR) wavebands 900 – 1700 nm is introduced in this paper. In order to fit most of commercial coating machines, it refers the general design process of LVF which is characteristic of free adjustable parameters of theoretical models.
    Geometrical and fabricated parameters of coating machines are applied into the design model to simulate the thin film profiles and distributions of LVF. The size of coating chamber and the height of local mask are also involved in those parameters and design model. Based on the principle of low pass filters, a simulation software for optical thin film design is used for the design of thin film structures. By taking consideration of the spectral characters of InGaAs detector inside the spectrometer, the usable wavebands of LVF is defined. The relationship between critical wavelength (λ_C) and the positions of LVF will be also known by analyzing its linear performance of transmission spectrum accomplished through simulating corresponding spectral performance for different relative thickness of thin film structures.
    The similarity and linearity for the thin film profiles of positions on relative thickness 25% - 75% are confirmed by comparing the outcomes of evaporation metered by a surface profilometer and theoretical models. The relationship between the heights of local mask and the linear variable areas is also known. Transmission spectrums of different positions on evaporated LVF are compared with theoretical results to check consistency between both.
    The design and fabrication process are used to fit with two different SWIR wavebands spectrometers for confirmation of practical uses in the last part of this paper. And the results of matching shows the process works.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究背景 2 1.4 研究架構 13 第二章 膜層結構設計 14 2.1 膜層結構設計規格 14 2.2 光學薄膜軟體設計方法 16 2.3 最佳調整膜厚方法之結果分析於近紅外光波段 19 2.4 LVF膜層漸變應用分析 21 第三章 模擬分析 24 3.1 膜層線性漸變分佈關係建立 24 第四章 鍍膜實作 30 4.1 鍍膜製程基板制定 30 4.2 濾光元件出廠與模擬比對分析 32 第五章 濾光元件量測及分析 35 5.1 膜厚輪廓之吻合度分析 35 5.2 輪廓量測之線性度分析 42 5.3 實際測量之擋板調變高度與漸變關係 49 第六章 穿透光譜分析與討論 53 6.1 穿透光譜量測及分析 53 6.2 λC對x之結果分析 64 第七章 範例應用 71 7.1 實際應用於短波紅外光譜儀波段(900 - 1700 nm) 71 7.2 實際應用於短波紅外光譜儀波段(900-1600 nm) 73 第八章 結論 75 參考資料 77

    [1] Y. H. Wu, “Development of Design Process for Sencond-Order Linear Variable Filters,” Ph.D dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2015).
    [2] K. Y. Chang, “Fabrication and Theoretical Modeling of Order Sorting Linear Variable Filters,” Ph.D dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2014).
    [3] C. H. Ko, K. Y. Chang and Y. M. Huang, “Theoretical Modeling and Experimental Verification of Linear Variable Filters,” International Journal of Surface and Engineering, Vol. 9, No. 2/3, pp. 216-230 (2015).
    [4] C. H. Ko, K. Y. Chang and Y. M. Huang, “Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting,” Optics Express, Vol. 23, No. 4, pp. 5102-5116 (2015).
    [5] Software Spectra Inc., The TFCalc, Thin Film Design Software, User’s Manual, Software Spectra Inc., USA (2009).
    [6] H. A. MacLeod, Thin-film Optical Filters, 4th ed, Taylor & Francis Group, NY (2010).
    [7] L. I. Epstein, “The design of optical filter,” Optical Society of America, Vol. 42, pp. 806-810 (1952).
    [8] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,新北市 (2012)。
    [9] Corning Inc., Corning Eagle XG Slim Glass Product Information Sheet, Corning Inc., USA (2013).
    [10] P. J. Murr, M. Schardt and A. W. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors, Vol. 13, No. 9, pp. 12687–12697 (2013).
    [11] R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Optics Letters, Vol. 30, No. 19, pp. 2647–2649 (2005).
    [12] A. J. G. Schellingerhout, M. A. Janocko, T. M. Klapwijk and J. E. Mooij, “Rate control for electron gun evaporation,” Review of Scientific Instruments, Vol. 60, No. 6, pp. 1177-1183 (1989).
    [13] StellarNet Inc., DWARF-Star Miniature NIR Spectrometer Product Information Sheet, StellarNet Inc., USA (2016).

    無法下載圖示 全文公開日期 2021/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE