簡易檢索 / 詳目顯示

研究生: 陳禹欣
Yu-Hsin Chen
論文名稱: 基於尺度不變特徵萃取光流法之物件追蹤
Object Tracking Based on Optical Flow With SIFT Feature Extraction
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 蘇順豐
Shun-Feng Su
蔡明忠
Ming-Jong Tsai
阮張榮
Chang-Jung Juan
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: 拉普拉斯優化之尺度不變特徵萃取光流追蹤行人追蹤
外文關鍵詞: LOG-SIFT (Laplacian of Gaussian – Scale Invaria, optical flow tracking, pedestrian tracking.
相關次數: 點閱:560下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討基於尺度不變光流法之物件追蹤,並應用於一個穩健的行人監控系統。這個系統由兩部分組成,第一部分是行人偵測系統,第二部分是以動態偵測系統來輔助行人偵測系統,以此補足行人偵測系統無法辨識的部分,使行人偵測系統更加穩健。
    在行人偵測的部分:文獻回顧顯示,在行人偵測系統的研究上,大多藉由HOG截取特徵向量再由SVM分類器去做分類行人和背景,但是對於基本型態和一般行人不太一樣的例子,像是撐傘的人、坐輪椅的人或是牽車的行人就有辨識上的困難,以上述方法則會無法辨識或無法完整辨識。
    在物體追蹤的部分:Lucas-Kanade光流法是一種稀疏光流法,先取出欲追蹤的前景後,再尋找角點當作特徵點,接著利用光流法追蹤特徵點的座標位置,即可計算特徵點移動的像素差。另外,在SIFT演算法中為了降低程式運算量,其於抓取關鍵點時會依據某些規則省略很多關鍵點,以此加快關鍵點比對的進行,但省略關鍵點會造成圖形比對精確度的降低。
    本論文提出結合LOG-SIFT (優化後的尺度不變特徵)擷取關鍵點的光流追蹤法,此法可改善原始光流法在物體做大動作、旋轉、翻轉或是移動過快時,追蹤的特徵點容易遺失或產生位移的狀況,可以解決在追蹤過程中遺失過多特徵點或導致特徵點無法繼續追蹤的情況。而此法(LOG-SIFT加上光流法)在程式執行時間上,也優於原始單純以LOG-SIFT逐幀進行匹配,可增加追蹤系統的即時性。在應用方面,可將此研發系統整合於交通號誌或線上即時路徑規劃系統,以保持交通順暢。


    This thesis discusses the object tracking based on optical flow with SIFT (Scale Invariant Feature Transform) feature extraction, and then applies it to a robust pedestrian detection system. This system is constructed by two parts: 1) a pedestrian detection subsystem; 2) a dynamical detection subsystem, capable of making up the unrecognized part in the former subsystem to assist the former subsystem.
    Literature survey indicates that in most of the pedestrian detection research HOG (Histogram of Oriented Gradients) features are extracted and then the pedestrian and background are distinguished by using the SVM (Support Vector Machines) classifier. However, it is difficult to recognize by using HOG & SVM for the cases with basic patterns different from general pedestrian, e.g., pedestrian holding umbrellas, in wheel chairs, and holding bicycles.
    Concerning the Lucas-Kanade (LK) optical flow method in object tracking, one should extracts the foreground, detects corner point as feature points, tracks feature points, and then calculates the pixel moving distance. For SIFT (Scale Invariant Feature Transform), in order to reduce the computation in programming, some rules will be used to omit many feature points. However, it will result in the lower accuracy in the graphical matching.
    This thesis first proposes the optical flow method integrated with LOG-SIFT (Laplacian of Gaussian – Scale Invariant Feature Transform) to extract features. This method can improve the cases with displacements or feature points easily to be lost, caused by the large action, rotation, overturning, and moving too fast. Therefore, it can solve the problem that the feature points cannot be tracked due to missing too many feature points. Concerning the execution time in programs, this method (LOG-SIFT integrated with the optical flow method) also behaves better than the original LOG-SIFT method, so it can improve the real-time performance. This developed system can be applied to traffic light control or online real-time route planning to reduce traffic congestion and to maintain smooth flow of traffic.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第1章 簡介 1 1.1文獻探討 1 1.2研究動機與目的 3 1.3論文架構 6 第2章 系統架構 7 2.1行人偵測系統 7 2.2行人偵測輔助系統 8 第3章 SVM HOG 10 3.1 HOG特徵 10 3.2 SVM 15 3.3行人偵測結果 18 第4章 抓取前景 19 4.1絕對差(absolute difference) 19 4.2背景相減 20 4.3稠密光流 21 第5章 特徵點提取 23 5.1尺度不變特徵轉換SIFT 23 5.1.1建造尺度空間 24 5.1.2尋找關鍵點 26 5.1.3移除不佳的關鍵點 28 5.1.4關鍵點角度計算 30 5.1.5產生特徵向量 31 5.2 PCA-SIFT 31 5.3 LOG-SIFT 32 5.3.1 Laplace 運算子 32 5.3.2 Laplacian of Gaussian 33 5.3.3 LOG-SIFT 35 5.4 SURF 36 5.4.1提取特徵點 37 5.4.2主方向分配 40 5.4.3特徵點描述 42 5.5比較和結果 43 5.5.1執行時間 44 5.5.2圖像尺度變化匹配 44 5.5.3圖像旋轉匹配 46 5.5.4圖像模糊匹配 51 5.5.5圖像光線改變匹配 54 5.5.6圖像仿射匹配 56 5.5.7比較和討論 57 第6章 尺度不變光流追蹤 60 6.1光流 60 6.2實驗結果與結論 64 6.2.1尺度不變光流追蹤 64 6.2.2將尺度不變光流追蹤應用到行人追蹤實驗 68 第7章 結論與未來展望 75 參考文獻 76

    [1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, Jun. 25, 2005, CA, USA.
    [2] W. L. Lu and J. Little, “Simultaneous tracking and action recognition using the pca-hog descriptor,” Computer and Robot Vision, pp. 6-13, Jun. 07-09, 2006, Quebec, Canada.
    [3] T. Kobayashi, A. Hidaka, and T. Kurita, “Selection of histograms of oriented gradients features for pedestrian detection,” International Conference on Neural Information, pp. 598-607, Nov. 25-28, 2008, Heidelberg, Berlin.
    [4] H. Xiong, “Fast pedestrian detection based on HOG-PCA and gentle AdaBoost,” International Conference on Computer Science and Service, pp. 1819-1822, Aug. 11-13, 2012, Nanjing, China.
    [5] H. Salmane, Y. Ruichek, and L. Khoudour, “Object tracking using Harris comer points based optical flow propagation and Kalman filter,” International IEEE Conference on Intelligent Transportation Systems, pp. 67-73, Oct. 5-7, 2011, Washington DC, USA.
    [6] C. Li, L. Guo, and Y. Hu, “A new method combining HOG and Kalman filter for video-based human detection and tracking,” IEEE Conference on International Congress on Image, vol. 1, pp. 290-293, Jun. 16-18, 2010, Yantai.
    [7] D. Wei, Y. Zhao, R. Cheng, and G. Li, “An enhanced histogram of oriented gradient for pedestrian detection”, International Conference on Intelligent Control and Information Processing, pp. 459-463, Jun. 9-11, 2013, Beijing, China.
    [8] Z. Chen, J. Cao, Y. Tang, and L. Tang, “Tracking of moving object based on optical flow detection,” IEEE International Conference on Computer Science and Network Technology, vol. 2, pp. 1096-1099, Dec. 24-26, 2011, Harbin.
    [9] M. B. Ka'aniche, and F. Br'emond, “Tracking HoG descriptors for gesture recognition,” IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 140-145, Sep. 2-4, 2009, Genova.
    [10] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target classification and tracking from real-time video.” IEEE Workshop on Applications of Computer Vision, pp. 8-14, Oct. 1, 1998, Princeton, NJ.
    [11] S. P. Zhu, J. Gao, and Z.-C. Guo “Video object segmentation based on change detection and frame difference accumulation,” Journal of Optoelectronics Laser, pp. 1592-1599, Oct. 24, 2013, Beijing, China.
    [12] I. Huerta, A. Amato, X. Roca, and J. Gonzalez, “Exploiting multiple cues in motion segmentation based on background subtraction,” Neurocomputing, vol. 100, pp. 183-196, Jan. 16, 2013.
    [13] W. Eric and L. Grimson, “Learning patterns of activity using real-time tracking,” Pattern Analysis and Machine Intelligence, vol. 22, pp. 747-757, Oct. 22, 2000, Washington, DC, USA.
    [14] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proceedings of Imaging Understanding Workshop, vol. 2, pp. 674-679, 1981, San Francisco, CA, USA.
    [15] P. Premaratne, S. Ajaz, and M. Premaratne, “Gesture tracking and recognition system using Lucas-Kanade algorithms,” Neurocomputing, vol. 116, pp. 242-249, Sep. 20, 2013.
    [16] W. Zhao and C. Ngo, “Flip-invariant SIFT for copy and object detection,” IEEE Transactions on Image Processing, vol. 22, no. 3, pp. 980-991, Jan. 25, 2013.
    [17] S. Wang, Y. Liu, L. Daxiang and H. Yan, “An Improved SIFT feature extraction method for Tyre tread patterns retrieval,” Computational Intelligence and Design, vol. 1, pp. 539-543, Dec. 13-14, 2014, Hangzhou.
    [18] C. Geng and X. Jiang, “SIFT features for face recognition,” Computer Science and Information Technology, pp. 598-602, Aug. 8-11, 2009, Beijing, China.
    [19] S. P. Nasholm, “Post-processing enhancement of reverberation-noise suppression in dual-frequency SURF imaging ,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 2, pp. 338- 348, Feb. 22, 2011.
    [20] S. P. Nasholm, R. Hansen, S. E. Masoy, and T. F. Johansen, “Transmit beams adapted to reverberation noise suppression using dual-frequency SURF imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 10, pp. 2124 -2133, Oct. 30, 2009.
    [21] S. Nashol, R. Hansen, and A. J. Angelsen, “Post-processing enhancement of reverberation-noise suppression in dual-frequency SURF imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no.2, pp. 338-348, Feb. 22, 2011.
    [22] M. B. Kaaniche and F. Bremond, “Tracking HoG descriptors for gesture recognition,” Advanced Video and Signal Based Surveillance, pp. 140-145, Sep. 2, 2009, Genova.
    [23] C. Yao, F. Wu, H. Chen, and X. Hao, “Traffic sign recognition using HOG-SVM and grid search,” International Conference on Signal Processing, pp. 962-965, Oct. 19-23, 2014, Hangzhou.
    [24] D. Sun and J. Watada, “Detecting pedestrians and vehicles in traffic scene based on boosted HOG features and SVM,” Intelligent Signal Processing, pp. 1-4, May. 15-17, 2015, Siena.
    [25] Y. Tan and J. Wang, “A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 4, pp. 385-395, Apr. 3, 2004.
    [26] S. Vassiliadis, E.A. Hakkennes, J. S. S. M. Wong, and G. G. Pechanek, “The sum-absolute-difference motion estimation accelerator,” Euromicro Conference, vol. 2, pp. 559-566, Aug. 25-27, 1998, Vasteras.
    [27] J. Vanne, E. Aho, T.D. Hamalainen, and K. Kuusilinna,“A high-performance sum of absolute difference implementation for motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 7, pp. 876-883, Jul. 24, 2006.
    [28] X. Cai, F. H. Ali, and E. Stipidis, “Robust online video background reconstruction using optical flow and pixel intensity distribution,” International Conference on Communications, pp. 526-530, May 19-23, 2008, Beijing, China.
    [29] J. Tang, X. Jing, and D. He, “Research on background reconstruction based on prediction and filtering,” Computer Science and Software Engineering, vol. 1, pp. 969-972, Dec. 12-14, 2008, Wuhan, Hubei.
    [30] G. Farneback, “Two-frame motion estimation based on polynomial expansion,” Scandinavian Conference, pp. 363-370, Jul. 29, 2003, Heidelberg, Berlin.
    [31] G. Farneback, “Very high accuracy velocity estimation using orientation ensors parametric motion and simultaneous segmentation of the motion field,” IEEE International Conference on Computer Vision, vol. 1, pp. 171-177, Oct. 21, 2001, Vancouver, Canada.
    [32] G. Farneback, “Polynomial expansion for orientation and motion estimation.PhD thesis,” Linkoping University, Sweden, no. 790, 2002, Linkoping.
    [33] D. Lowe, “Distinctive image features from scale invariant keypoints,” International Journal of Computer Vision, pp. 91-110, 2006.
    [34] Y. Ke and R. Sukthankar, “ PCA-SIFT: a more distinctive representation for local image descriptors,” Computer Vision and Pattern Recognition, IEEE Computer Society Conference, vol.2, pp. 506-513, Jul. 27, 2004.
    [35] 朱庭葳,「以邊緣強化之SIFT偵測移動物件」,國立臺灣科技大學電機工程系碩士學位論文,1月,26日,2016。
    [36] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “ Speeded-up robust features (SURF),” Similarity Matching in Computer Vision and Multimedia, vol.110, no 3, pp. 346-359, Jun. 23, 2008.
    [37] L. Juan and O. Gwun, “A comparison of SIFT, PCA-SIFT and SURF,” International Journal of Image Processing, vol. 3, no. 4, pp. 561-756, Aug. 21, 2009, South Korea.
    [38] K. P. Horn and G. Rhunck, “Determining optical flow,” Massachusetts Institute of Technology, 1980, Cambridge, MA, USA.
    [39] D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Imaging Understanding Workshop, vol. 2, pp. 121-130, Aug. 24-28, 1981, CA, USA.

    無法下載圖示 全文公開日期 2021/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE