簡易檢索 / 詳目顯示

研究生: 蔡立德
Li-Te Tsai
論文名稱: 應用最佳化演算法於衛星雲圖之分類
Applying Optimization Algorithms to Classification of Satellite Cloud Images
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 柯正浩
Cheng-Hao Ko
李俊賢
Jin-Shyan Lee
黃旭志
Hsu-Chih Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 最佳化演算法自我學習粒子群演算法中級解析度成像分光輻射度計衛星影像分類
外文關鍵詞: Optimization Algorithms, Self-Learning Particle Swarm Optimization (SLPSO, Moderate Resolution Imaging Spectroradiometer (M, Satellite Image Classification.
相關次數: 點閱:701下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用最佳化演算法對中級解析度成像分光輻射度計(Moderate Resolution Imaging Spectroradiometer, MODIS)影像進行分類。MODIS的觀測資料從可見光至紅外線,共有36個頻道可以使用。在傳統方法上經常使用亮度溫度(Brightness Temperature, BT)方法將影像分成四個種類,其中包括低雲、中雲、高雲及無雲,然而傳統方法在分類雲之邊緣及薄雲上的效果有限。因此,在本研究中使用MODIS的四個頻道組成偽色彩影像,並且採用基因演算法(Genetic Algorithm, GA)、粒子群(Particle Swarm Optimization, PSO)演算法及自我學習粒子群(Self-Learning Particle Swarm Optimization, SLPSO)演算法去提高分類性能。最後,將以多筆資料結果來進行比對。經實驗證明,我們所提出的方法可以有效分辨雲之種類,並且能有效的辨識出雲的邊緣及薄雲。


    This paper mainly applies the optimization algorithms to the satellite image classification. The images are based on the Moderate Resolution Imaging Spectroradiometer (MODIS). The data of observation of MODIS have 36 channels can be used from visible to infrared. Traditionally, the images are classified into four classes by brightness temperature (BT) method, including low clouds, middle clouds, high clouds, non-clouds. However, this method has limited effect on classifying the edge of the cloud and thin cloud. Therefore, in this research, we use four channels of MODIS to constitute pseudo-color image, and we adopt genetic algorithm (GA), particle swarm optimization (PSO) and self-learning particle swarm optimization (SLPSO) to improve the performance. Finally, we will compare multiple results of data. Simulation results demonstrate that the proposed methods can effectively i) classify the categories of cloud, ii) distinguish the edge of the cloud, and iii) find out the thin cloud.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第1章 簡介 1 1.1 研究背景與動機 1 1.2 論文架構 3 第2章 雲的形成 4 2.1雲的簡介 4 2.1.1 雲的構成 4 2.1.2 雲的形成方式 4 2.2雲的種類及特徵 5 2.2.1 高雲族 5 2.2.2 中雲族 5 2.2.3 低雲族 5 2.2.4 直展雲族 6 2.3 雲的輻射特性 6 2.3.1 輻射特性應用 6 第3章 MODIS介紹 8 3.1 衛星簡介 8 3.1.1 衛星種類 8 3.1.2 氣象衛星 8 3.2 MODIS介紹 9 3.2.1 MODIS資料特性 9 3.2.2 MODIS影像資料與應用 10 第4章 最佳化演算法 13 4.1 群體智能演算法 (Swarm Intelligence Algorithm) 13 4.1.1 群體智能介紹 13 4.1.2 群體智能演算法的基本特性 13 4.2 基因演算法 (GA) 14 4.2.1 GA之基本原理 15 4.2.2 GA之演算法流程 17 4.2.3 GA演算法之Pseudo code 18 4.3 粒子群演算法 (PSO) 20 4.3.1 PSO之基本原理 21 4.3.2 PSO之演算法流程 22 4.3.3 PSO演算法之Pseudo code 23 第5章 研究方法 24 5.1 假色影像 (Pseudo-color Image) 24 5.2 自我學習粒子群演算法 (SLPSO) 27 5.2.1 與 之權衡 27 5.2.2 SLPSO之特點 27 5.2.3 SLPSO之學習策略 28 5.2.4 自主學習機制 29 5.2.5 SLPSO之演算法流程 31 5.2.6 SLPSO之Pseudo code 32 5.3 適應值函數 33 5.3.1 適應值函數設計 33 5.4 影像分類 35 第6章 模擬結果與討論 36 6.1模擬設計 36 6.2 最佳化演算法之效能比較 36 6.3 MODIS分類結果 40 6.4 模擬結果與討論 51 第7章 結論與未來研究方向 52 7.1結論 52 7.2未來研究方向 52 參考文獻 53

    [1] M. P. Weinreb, R. Xie, J. H. Lienesch, and D. S. Crosby, “Destriping GOESM image by matching empirical distribution functions,” Remote Sensing of Environment, vol. 29, pp. 185-195, 1989.
    [2] K. Komeza, E. N. Juszczak, P. Di, Barba, P. Napieralski, J. P. Lecointe, and N. Hihat, “Using the FEM meshes adaption and genetic algorithms for identification of permeability in normal direction of anisotropic sheets,” IEEE Trans. Magnetic, vol. 48, no. 2, pp. 211-214, 2012.
    [3] Y. Okamoto, Y. Tominaga, and S. Sato, “Topological design for 3D optimization using the combination of multistep genetic algorithm with design space reduction and nonconforming mesh connection,” IEEE Trans. Magnetics, vol. 48, no. 2, pp. 515-518, 2012.
    [4] H. Liang, S. An, J. Wang, Y. Zhou, H. Fan, P. Krebs, and J. Zhou, “Optimizing time multiplexing auto-stereoscopic displays with a genetic algorithm,” Journal of Display Technology, vol. 10, no. 8, pp. 695-699, 2014.
    [5] Y. Fu, M. Ding, and C. Zhou, “Phase angle encoded and quantum behaved particle swarm optimization applied to three-dimensional route planning for UAV,” IEEE Trans. System Man and Cybernetics Part A: Systems and Humans, vol. 42, no. 2, pp. 511-526, 2012.
    [6] S. Grubisic, W. P. Carpes, J. P. A. Bastos, and G. Santos, “Association of a PSO optimizer with a quasi-3d ray-tracing propagation model for mono and multi-criterion antenna positioning in indoor environments,” IEEE Trans. Magnetics, vol. 49, no. 5, pp. 1645-1648, 2013.
    [7] W. Xu, B. Y. Duan, P. Li, N. Hu, and Y. Qiu, “Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes,” IEEE Trans. Antennas and Propagation, vol. 62, no. 11, pp. 5880-5885, 2014.
    [8] H. Wei and X. S. Tang, “A genetic-algorithm-based explicit description of object contour and its ability to facilitate recognition,” IEEE Trans. Cybernetics, vol. 45, no. 10, pp. 2558-2571, 2015.
    [9] S. K. Mylonas, D. G. Stavrakoudis, J. B. Theocharis, and P. A. Mastorocostas, “Classification of remotely sensed images using the genesis fuzzy segmentation algorithm,” IEEE Trans. Geoscience and Remote Sensing, vol. 53, no. 10, pp. 5352-5376, 2015.
    [10] H. Gao, W. B. Xu, J. Sun, and Y. L. Tang, “Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm,” IEEE Trans. Instrumentation and Measurement, vol. 59, no. 4, pp. 934-946, 2010.
    [11] C. Y. Chang, Y. F. Lei, C. H. Tseng, and S. R. Shih, “Thyroid segmentation and volume estimation in ultrasound images,” IEEE Trans. Biomedical Engineering, vol. 57, no. 6, pp. 1348-1357, 2010.
    [12] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: an overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33-58, 2007.
    [13] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baska, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evolutionary Computation, vol. 10, no. 3, pp. 281-295, 2006.
    [14] C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 3, pp. 627-646, 2012.
    [15] M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geoscience and Remote Sensing, vol. 30, no. 1, pp. 2-27, 1992.
    [16] S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” Journal of Geophysical Research, vol. 103, no. D24, pp. 32,141-32,157, 1998.
    [17] Y. J. Zheng, H. F. Ling, J. Y. Xue, and S. Y. Chen, “Population classification in fire evacuation: a multiobjective particle swarm optimization approach,” IEEE Trans. Evolutionary Computation, vol. 18, no. 1, pp. 70-81, 2014.
    [18] Z. Zhang, K. Long, J. Wang, and F. Dressler, “On swarm intelligence inspired self-organized networking: its bionic mechanisms designing principles and optimization approaches,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 513-537, 2014.
    [19] J. Sun, V. Palade, X. J. Wu, W. Fang, and Z. Wang, “Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization,” IEEE Trans. Industrial Informatics, vol. 10, no. 1, pp. 222-232, 2014.
    [20] T .H. S. Li, Y. H. Wang, C. C. Chen, and C. J. Lin, “A fast color information setup using EP-like PSO for manipulator grasping color objects,” IEEE Trans. Industrial Informatics, vol. 10, no. 1, pp. 645-654, 2014.
    [21] W. Hu, J. Gao, Y. Wang, O. Wu, S. Maybank, “Online adaboost-based parameterized methods for dynamic distributed network intrusion detection,” IEEE Trans. Cybernetics, vol. 44, no. 1, pp. 66-82, 2014.
    [22] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,” Society for Industrial and Applied Mathematics(SIAM) Journal on Computing, vol. 2, no. 2, pp. 88-105, 1973.
    [23] S. M. R. Islam, M. A. Ahsan, and B. C. Ghosh, “Optimization of power system operation with static var compensator applying ACO algorithm,” International Conf. Electrical Information and Communication Technology(EICT), Khulna, Bangladesh, Feb. 13-15 2013, pp. 1-6.
    [24] W. Y. Tao, and Y. J. Huang, “Research on disposal station location problem based on genetic and simulated annealing algorithm,” International Conf. Computational and Information Sciences, Shiyang, China, June 21-23 2013, pp. 1897-1900.
    [25] L. Xu, Y. P. Li, and J. Xuan, “Based on tabu search and particle swarm optimization algorithms solving job shop scheduling optimization problems,” International Conf. Digital Manufacturing & Automation, Qingdao, China, June 29-30 2013, pp. 322-324.
    [26] A. A. Tahir, “A system based on ratio images and quick probabilistic neural network for continuous cloud classification,” IEEE Trans. Geoscience and Remote Sensing, vol. 49, no. 12, pp. 5008-5015, 2011.
    [27] C. Li and S. Yang, “An adaptive learning particle swarm optimizer for function optimization,” IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21 2009, pp. 381-388.
    [28] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 124-141, 1999.
    [29] D. E. Goldberg, “Probability matching, the magnitude of reinforcement, and classifier system bidding,” Journal on Machine Learning, vol. 5, no. 4, pp. 407-425, 1990.
    [30] C. Li, S. Yang, and I. A. Korejo, “An adaptive mutation operator for particle swarm optimization,” Centre for Computational Intelligence, pp. 165-170. 2008.
    [31] D. Thierens, “An adaptive pursuit strategy for allocating operator probabilities,” in Proc. Conf. Genetic and Evolutionary Computation Conference(GECCO), New York, USA, June 25 2005, pp. 1539-1546.
    [32] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Trans. Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
    [33] S. Liu, L. Zhang, Z. Zhang, C. Wang, and B. Xiao, “Automatic cloud detection for all-sky images using superpixel segmentation,” IEEE Trans. Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 354-358, 2015.
    [34] S. Liu, Z. Zhang, B. Xiao, and X. Cao, “Ground-based cloud detection using automatic graph cut,” IEEE Trans. Geoscience and Remote Sensing Letters, vol. 12, no. 6, pp. 1342-1346, 2015.
    [35] S. U. Khan, S. Y. Yang, L. Y. Wang, and L. Liu, “A modified particle swarm optimization algorithm for global optimizations of inverse problems,” IEEE Trans. Magnetics, vol. 52, no. 3, 2016.
    [36] Y. W. Jeong, J. B. Park, S. H. Jang, and K. Y. Lee, “A new quantum-inspired binary pso: application to unit commitment problems for power systems,” IEEE Trans. Power Systems, vol. 25, no. 3, pp. 1486-1495, 2010.

    無法下載圖示 全文公開日期 2021/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE