簡易檢索 / 詳目顯示

研究生: 石正瑄
Cheng-Hsuan Shih
論文名稱: 軟體基地臺實體層之多執行緒平行處理
Multi-Thread Parallel Processing for Soft PHY of OAI eNB
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 徐勝均
Sheng-Dong Xu
許騰尹
Terng-Yin Hsu
柯正浩
Cheng-Hao Ko
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: 多執行緒平行化處理
外文關鍵詞: Soft-PHY, OpenAirInterface (OAI), 3GPP LTE, Pthreads
相關次數: 點閱:679下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為:使用歐洲電信學院EUROCOM所開發的一個根據C語言之開放原始碼OpenAirInterface (OAI),致力實現電信基地台軟體化。我們將其中實體層PHY層之程式語言執行流程重新改寫、編排並配合使用C語言中Pthreads的函式及功能實現PHY層之平行化處理以增進基地台效能。此種設計方法可以改進原始OAI程式序列式執行程式之效率。用多執行緒處理PHY層中下行資料傳送的流程,以減少C語言for迴圈中的負擔以及時間。所使用的PHY層下行程序中的子函式,仍保留了原始程式碼的優點,包括其架構的健全與穩固,不易發生資料填寫的錯亂以及記憶體使用之間的碰撞。與原始OAI相比,PHY層下行程序的多執行緒化可以較快速地使複數UE連線的狀態下完成資料傳輸。實測結果充分說明了此架構的OAI程式效能上的優越性。


    The objective of this research is to realize the softwarization of the base station of telecommunication using OpenAirInterface (OAI) source code based on the C language developed by EUROCOM. We rewrite and rearrange the execution procedures of the program in the physical layer (PHY), and apply the functions of Pthreads in C language to implement the parallel processing of PHY so as to improve the performance of the soft-defined base station. Such designed architecture can improve the efficiency of original OAI sequent processing. The procedures of PHY downlink data transmitting are processed in multiple threads to reduce the loading and execution time of for loop processing of C. The sub-functions used in this thesis still retain advantages of original codes, including the completeness and stability of the scheme, and the clearness of data filling to prevent from the confliction in the comprehensive dispatching of the use of memory resource. In comparison with the original OAI, the multi-thread PHY downlink could finish the data transmission more quickly under the connection of multiple UEs. The physical test results show the excellent performance of the OAI software based on the proposed architecture.

    摘要 Abstract 誌謝 目錄 第1章 簡介 第2章 預備知識 第3章 PHY層下行流程新架構設計 第4章 PHY層下行流程之Thread新架構應用 第5章 Multi-thread版PHY層下行流程實測 第6章 結論與未來研究方向 參考文獻

    [1]S. Schwarz, and M. Rupp, “Exploring coordinated multipoint beamforming strategies for 5G cellular, ” IEEE Access, vol. 2, pp. 930-946, Aug. 29, 2014.
    [2]P. K. Mishra, S. Pandey, and S. K. Biswash, “Efficient resource management by exploiting D2D communication for 5G networks,” IEEE Access, vol. 4, pp. 9910-9922, Sep. 7, 2016.
    [3]D. Muirhead, M. A. Imran, and K. Arshad, “Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks,” IEEE Access, vol. 3, pp. 1562-1572, Aug. 27, 2015.
    [4] T. Talib, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.
    [5] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network slices toward 5G communications: slicing the LTE network,” IEEE Communications Magazine, vol. 55, no. 8, pp. 146-154, 2017.
    [6]T. Taleb, A. Ksentini, and R. Jäntti, ““Anything as a Service” for 5G Mobile Systems,” IEEE Network, vol. 30, no. 6, pp. 84-91, Nov.-Dec., 2017.
    [7]G. Al-Juboori, A. Doufexi and A. R. Nix, “System level 5G evaluation of MIMO-GFDM in an LTE-A platform Ghaith,” International Conference on Telecommunications (ICT), Limassol, Cyprus, May 3-5, 2017.
    [8]I. D. Silva, G. Mildh, J. Rune, P. Wallentin, J. Vikberg, P. Schliwa-Bertling, and R. Fan, “Tight integration of new 5G air interface and LTE to fulfill 5G requirements,” Vehicular Technology Conference (VTC Spring), Glasgow, UK, May 11-14, 2015
    [9]A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A. U. Quddus, M. A. Imran, C. H. Foh, and R. Tafazolli, “Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations,” IEEE Access, vol. 4, pp. 3322-3339, Jun. 24, 2016.
    [10]H. Zhang, Y. Dong, J. Cheng, Md. J. Hossain, and V. C. M. Leung, “Fronthauling for 5G LT E-U ultra dense cloud small cell networks,” IEEE Wireless Communications, vol. 23, no. 6, pp. 48-53, Dec. 2016.
    [11]J. Wang, C. Zhang, R. Li, G. Wang, and J. Wang, “Narrow-band SCMA: a new solution for 5G IoT uplink communications,” Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, Sep. 18-21, 2016
    [12]D. Boviz, C. S. Chen, and S. Yang, “Effective design of multi-user reception and fronthaul rate allocation in 5G cloud RAN,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp. 1825-1836, Aug. 2017.
    [13]C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN architecture: a comparison of multiple optical fronthaul networks,” Optical Network Design and Modeling (ONDM), Budapest, Hungary, May 15-17, 2017.
    [14]G. Mountaser, M. L. Rosas, T. Mahmoodi, and M. Dohler, “On the feasibility of MAC and PHY split in cloud RAN,” Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, March 19-22, 2017.
    [15]S. B S, S. Kalyanasundaram, and S. Kumar V, “A novel HARQ pooling scheme for improved multi-connectivity in 5G cloud RAN,” Globecom Workshops (GC Wkshps), Washington, DC, USA, Dec. 4-8, 2016.
    [16]H. Wang, M. M. A. Hossain, and C. Cavdar, “Cloud RAN architectures with optical and mm-wave transport technologies,” International Conference on Transparent Optical Networks (ICTON), Girona, Spain, July 2-6, 2017.
    [17]M. Huang and X. Zhang, “Distributed MAC scheduling scheme for C-RAN with non-ideal fronthaul in 5G networks,” Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, March 19-22, 2017.
    [18]P. Monti, Y. Li, J. Mårtensson, M. Fiorani, B. Skubic, Z. Ghebretensaé, and L. Wosinska, “A flexible 5G RAN architecture with dynamic baseband split distribution and configurable optical transport,” International Conference on Transparent Optical Networks (ICTON), Girona, Spain, July 2-6, 2017.
    [19]C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar, “FlexCRAN: a flexible functional split framework over ethernet fronthaul in cloud-RAN,” IEEE International Conference on Communications (ICC), Paris, France, May 21-25, 2017.
    [20]U. Karneyenka, K. Mohta, and M. Moh, “Location and mobility aware resource management for 5G cloud radio access networks,” International Conference on High Performance Computing & Simulation (HPCS), Genoa, Italy, July 17-21, 2017.
    [21]M. Yin, W. Li, L. Feng, P. Yu, and X. Qiu, “Multi-cell cooperative outage compensation in cloud-RANs based 5G public safety network,” IEEE Access, vol. 5, pp. 17309-17321, Aug. 2, 2017.
    [22]R. Wang, H. Hu and X. Yang, “Potentials and Challenges of C-RAN Supporting Multi-RATs Toward 5G Mobile Networks,” IEEE Access, vol. 2, pp. 1187-1195, Oct. 1, 2014.
    [23]W. Hong, “Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift,” IEEE Microwave Magazine, vol. 18, no. 7, pp. 86-102, Nov.-Dec. 2017.
    [24]X. Wang, C. Cavdar, L. Wang, M. Tornatore, H. S. Chung, H. H. Lee, S. M. Park, and B. Mukherjee, “Virtualized cloud radio access network for 5G transport,” IEEE Communications Magazine, vol. 55, no. 9, pp. 202-209, Sep. 2017.
    [25]H. J. Son and M. M. Do, “Mobile network architecture for 5G era - new C-RAN architecture and distributed 5G core,” Oct. 6, 2015.
    [26]G. Judd, and P. Steenkiste, “A Software Architecture for Physical Layer Wireless Network Emulation,” International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, New York, NY, USA, July 2006, pp. 2-9.
    [27]“Home·Wiki·oai/ openairinterface5G·Gitlab,”
    [28]A. A. Gebremariam, M. Chowdhury, A. Goldsmithy, and F. Granelli, “An OpenAirInterface based implementation of dynamic spectrum-level slicing across heterogeneous networks,” IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, Jan. 8-11, 2017, pp. 609-610.
    [29]R. Falkenberg, C. Ide, and C. Wietfeld, “Client-based control channel analysis for connectivity estimation in LTE networks,” Vehicular Technology Conference, Montreal, QC, Canada, Sep. 18-21, 2017.
    [30]I. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and N. Nikaein, “Critical issues of centralized and cloudified LTE-FDD radio access networks,” IEEE International Conference on Communications (ICC), London, UK, June 8-12, 2015, pp. 5523-5528.
    [31]X. Jiang and F. Kaltenberger, “Demo: an LTE compatible massive MIMO testbed based on OpenAirInterface,” International ITG Workshop on Smart Antennas; Proceedings of, Berlin, Germany, March 15-17, 2017, pp. 21-22.
    [32]H. Shen, X. Wei, H. Liu, Y. Liu, and K. Zheng, “Design and implementation of an LTE system with multi-thread parallel processing on OpenAirInterface platform,” Vehicular Technology Conference, Montreal, QC, Canada, Sep. 18-21, 2017.
    [33]F. Kaltenberger, R. Ghaffar, and R. Knopp, “Low-complexity distributed MIMO receiver and its implementation on the OpenAirInterface platform,” Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, Sep. 13-16, 2009, pp. 2494-2498.
    [34]T. Magounaki, F. Kaltenberger, X. Jiang, C. Buey, P. Ratajczak, and F. Ferrero, “Experimental evaluation of relative calibration in a MISO-TDD system,” European Conference on Networks and Communications (EuCNC), Oulu, Finland, June 12-15, 2017.
    [35]S. S. Kumar, R. Knopp, N. Nikaein, D. Mishra, B. R. Tamma, A. Franklin A, K. Kuchi, and R. Gupta, “FLEXCRAN cloud radio access network prototype using OpenAirInterface,” International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, Jan. 4-8, 2017, pp. 421-422.
    [36]P. Agostini, R. Knoppt, J. Harrit, and N. Haziza, “Implementation and test of a DSRC prototype on OpenAirInterface SDR platform,” International Conference on Communications Workshops (ICC), Budapest, Hungary, June 9-13, 2013, pp. 510-514.
    [37]S. Koh and S. Lee, “Implementation of OpenAirInterface control software for 4G network,” International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, July 4-7, 2017, pp. 747-749.
    [38]C. Buey, T. Magounaki, F. Ferrero, P. Ratajczak, L. Lizzi, and F. Kaltenberger, “MIMO antenna performance assessment based on open source software defined radio,” European Conference on Antennas and Propagation (EUCAP), Paris, France, March 19-24, 2017, pp. 644-647.
    [39]C.-C. Wang, Z.-N. Lin, Sh.-R. Yang, and P. Lin, “Mobile edge computing-enabled channel-aware video streaming for 4G LTE,” International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, June 26-30, 2017, pp. 564-569.
    [40]F. Kaltenberger, I. Latif, and R. Knopp, “On scalability, robustness and accuracy of physical layer abstraction for large-scale system-level evaluations of LTE networks,” Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 3-6, 2013, pp. 1644-1648.
    [41]A. Hafsaoui, N. Nikaein, and L. Wang, “OpenAirInterface traffic generator (OTG) a realistic traffic generation tool for emerging application scenarios,” International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), Washington, DC, USA, Aug. 7-9, 2012, pp. 492-494.
    [42]I. Latif, F. Kaltenberger, R. Ghaffar, R. Knopp, D. Nussbaum, and H. Callewaert, “Performance of LTE in rural areas - benefits of opportunistic multi-user MIMO,” International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, Sep. 11-14, 2011, pp. 2004-2008.
    [43]B. Zayen, B. Kouassi, R. Knopp, F. Kaltenberger, D. Slock, I. Ghauri, and L. Deneire, “Software implementation of spatial interweave cognitive radio communication using OpenAirInterface platform,” International Symposium on Wireless Communication Systems (ISWCS), Paris, France, Aug. 28-31, 2012, pp. 401-405.
    [44]T. X. Tran, A. Younis, and D. Pompili, “Understanding the computational requirements of virtualized baseband units using a programmable cloud radio access network testbed,” International Conference on Autonomic Computing (ICAC), Columbus, OH, USA, July 17-21, 2017, pp. 221-226.
    [45]F. Kaltenberger and S. Wagner, “Experimental analysis of network-aided interference-aware receiver for LTE MU-MIMO,” Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, June 22-25, 2014, pp. 325-328.
    [46]X. Wei, H. Liu, Z. Geng, K. Zheng, R. Xu, Y. Liu, and P. Chen, “Software defined radio implementation of a non-orthogonal multiple access system towards 5G,” IEEE Access, vol. 4, pp. 9604-9613, Dec. 9, 2016.
    [47]F. Kaltenberger, R. Knopp, M. Danneberg, and A. Festag, “Experimental analysis and simulative validation of dynamic spectrum access for coexistence of 4G and future 5G systems,” European Conference on Networks and Communications (EuCNC), Paris, France, June 29-July 2, pp. 497-501.
    [48]C. Y. Yeoh, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan, “Performance study of LTE experimental testbed using OpenAirInterface,” International Conference on Advanced Communication Technology (ICACT), Pyeongchang, South Korea, Jan. 31-Feb. 3, 2016, pp. 617-622.
    [49]F. Kaltenberger, R. Knopp, N. Nikaein, D. Nussbaum, L. Gauthier, and C. Bonnet, “OpenAirInterface: open-source software radio solution for 5G,” European Conference on Networks and Communications (EuCNC), Paris, France, June 29-July 2, 2015.
    [50]R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “OpenAirInterface-an effective emulation platform for LTE and LTE-Advanced,” International Conference on Ubiquitous and Future Networks (ICUFN), Shanghai, China, July 8-11, 2014, pp. 127-132.
    [51]N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “OpenAirInterface: a flexible platform for 5G research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, Oct. 2014.
    [52]K. Alexandris, N. Nikaein, R. Knopp, and C. Bonnet, “Analyzing X2 handover in LTE/LTE-A,” International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Tempe, AZ, USA, May 9-13, 2016.
    [53]R. Favraud, and N. Nikaein, “Wireless mesh backhauling for LTE/LTE-A networks,” MILCOM 2015 - 2015 IEEE Military Communications Conference, Tampa, FL, USA, Oct. 26-28, 2015, pp. 695-700.
    [54]N.-D. Nguyen, R. Knopp, N. Nikaein, and C. Bonnet, “Implementation and validation of multimedia broadcast multicast service for LTE/LTE-Advanced in OpenAirInterface platform,” Conference on Local Computer Networks Workshops (LCN Workshops), Sydney, NSW, Oct. 21-24, 2013, pp. 70–76.
    [55]A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance analysis of OpenAirInterface system emulation,” Future Internet of Things and Cloud (FiCloud), Rome, Italy, Aug. 24-26, 2015, pp. 662-669.
    [56]“ShareTechnote,” http://www.sharetechnote.com/
    [57]Z. Yuan, J. Wang, K. Jiang, and M. Gao, “A real-time ISAR imaging structure based on GPU and CPU heterogeneous parallel processing,” International Conference on Signal Processing (ICSP), Chengdu, China, Nov. 6-10, 2016, pp. 1539-1544.
    [58]F. Naveros, N. R. Luque, J. A. Garrido, R. R. Carrillo, M. Anguita, and E. Ros, “A spiking neural simulator integrating event-driven and time-driven computation schemes using parallel CPU-GPU co-processing: a case study,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 7, pp. 1567–1574, July 2016.
    [59]M. K. Gharzai, D. Hong, J. A. Schmitz, M. W. Hoffman, and S. Balkır, “Real-time trajectory calculation and prediction using neighborhood-level parallel processing,” International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, May 28-31, 2017.
    [60]X. Zhou, and J. Wang, “Wavefront parallel processing based on POSIX threads,” International Conference on Consumer Electronics-China (ICCE-China), Guangzhou, China, Dec. 19-21, 2016.
    [61]J. Chen, Q. Wang, B. Su, L. Shen, and Z. Wang, “A hybrid power-performance adjustment strategy for clustered multi-threading architecture,” International Conference on High Performance Computing and Communications; International Conference on Smart City; International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, NSW, Australia, Dec. 12-14, 2016, pp. 292-300.
    [62]T. Matsuzaki, S. Amamiya, M. Izumi, and M. Amamiya, “A multi-thread processor architecture based on the continuation model,” Innovative Architecture for Future Generation High-Performance Processors and Systems, Oahu, HI, USA, Jan. 17, 2005.
    [63]V. Lucas-Sabola, G. Seco-Granados, J. A. L´opez-Salcedo, J. A. Garc´ıa-Molina, and M. Crisci, “Computational performance of a Cloud GNSS receiver using multi-thread parallelization,” ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, Dec. 14-16, 2016.
    [64]K. W. Park, J.-W. Suh, B.-S. Seo, M. J. Lee, and C. Park, “Design of signal acquisition and tracking process based on multi-thread for real-time GNSS software receiver,” International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, June 28-30, 2016.
    [65]B. Shekh, E. de Doncker, and D. Prieto, “Hybrid multi-threaded simulation of agent-based pandemic modeling using multiple GPUs,” International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA, Nov. 9-12, 2015, pp. 1478-1485.

    無法下載圖示 全文公開日期 2022/10/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE