簡易檢索 / 詳目顯示

研究生: 李建德
Jian-De Lee
論文名稱: 新Shimizu–Morioka系統之渾沌同步及其應用在FPGA上實現影像加密
Chaos Synchronization of New Shimizu–Morioka System and Implementation on Image Encryption via FPGA
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 陳金聖
none
吳常熙
none
郭永麟
Yong-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 107
中文關鍵詞: 渾沌系統倒階控制適應性控制BGYC同步FPGA影像加密與解密。
外文關鍵詞: Chaotic system, Backstepping control, Adaptive control, BGYC synchronization, FPGA, Image encryption
相關次數: 點閱:753下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文在研究一個新Shimizu–Morioka渾沌系統,並運用相圖、散度分析、頻譜分析、平衡點分析、Lyapunov指數等技術,分析此系統的特性與運動行為,接著模擬實際電路與渾沌同步的數值分析。在控制理論部分,利用倒階控制、適應性控制、GYC 部份穩定理論與BGYC 同步方法,設計控制器運用於此渾沌系統,使主系統和從系統可以同步。在驗證提出的模型和控制器後,使用FPGA板實現渾沌信號電路,並藉由此渾沌訊號對圖像作安全加密演算法,並成功利用耦合同步控制在FPGA板上進行圖像解密演算法。在這項研究中,我們將渾沌主系統轉成數位訊號,進而對圖像加密,並利用同步後的從系統對圖像進行解密。


    The new Shimizu–Morioka chaotic system is presented in this study. We use techniques include phase portraits, divergence computing, power spectrum analysis, equilibrium point analysis and Lyapunov exponent to analysis and understanding of the dynamical behaviors of the chaotic system. Furthermore, we simulate the real circuit and chaos synchronization of numerical analysis. In control theory, we utilize backstepping control, adaptive control, GYC partial region stability theory and BGYC synchronization control to make a slave system be synchronized with the new Shimizu–Morioka chaotic system. After validating the proposed model and controller, the chaotic synchronization and encryption are implemented with FPGA board. We implement the chaotic signal circuits by using FPGA board and implement these chaotic signals for image secure encryption algorithm. In addition, we successfully utilize the synchronization of the coupled control with the new Shimizu–Morioka system for the image encryption algorithm on FPGA. We change the master chaotic system to digital signals and use them to encrypt the image and use the digital signals of the synchronized slave system to decrypt the image in this study.

    摘要 I Abstract II 誌謝 III List of Figures VI List of Tables X Chapter1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.3 Thesis Structure 5 Chapter2 Nonlinear Dynamics Analysis of the New Shimizu–Morioka system 6 2.1 Phase Portraits of the New Shimizu–Morioka System 6 2.2 Divergence Analysis of the New Shimizu–Morioka System 7 2.3 Equilibrium Point Analysis of the New Shimizu–Morioka System 7 2.4 Power Spectrum Analysis of the New Shimizu–Morioka System 9 2.5 Lyapunov Exponent of the New Shimizu–Morioka System 9 2.6 Design and Realization of Electronic Circuit 9 Chapter3 Chaos Synchronization of the New Shimizu–Morioka System 21 3.1 Design of Backstepping Control 21 3.2 Backstepping Control of the New Shimizu–Morioka System 24 3.3 Adaptive Backstepping Design 28 3.4 Adaptive Synchronization of the New Shimizu–Morioka System via Backstepping Control 32 3.5 Adaptive Synchronization of the New Shimizu–Morioka System via BGYC 38 Chapter4 Chaos Synchronization of the New Shimizu–Morioka System Based on Discrete-time 45 4.1 An Introduction to FPGAs 45 4.2 Euler Method Discretization 47 4.3 Discretization of Backstepping Synchronization of the New Shimizu–Morioka System 49 4.4 Discretization of Adaptive Backstepping Synchronization of the New Shimizu–Morioka System 53 4.5 Discretization of Adaptive BGYC Synchronization of the New Shimizu–Morioka System 58 Chapter5 FPGA Implementation of the New Shimizu–Morioka System for Image Encryption 64 5.1 Research and Method 64 5.2 XOR Encryption 65 5.3 Image Encryption 66 5.4 Image Decryption 68 5.5 Histogram Analysis 70 5.6 Correlation Analysis 72 5.7 Differential Attack Analysis 74 5.8 Information Entropy Analysis 75 Chapter6 Conclusion 77 Appendix GYC Partial Region Stability Theory 78 References 88

    [1].www.cisco.com
    [2].K. D. Patel and S. Belani, “Image Encryption Using Different Techniques: A Review,” International Journal of Emerging Technology and Advanced Engineering, vol. 1, no. 1, pp. 30-34, Nov. 2011.
    [3].R. Brown and L. O. Chua, “Clarifying chaos: Examples and counterexamples,” International Journal of Bifurcation and Chaos, vol. 6, no. 2, pp. 219-249, Feb. 1996.
    [4].F. Dachselt and W. Schwarz, “Chaos and cryptography,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 12, pp. 1498-1509, Dec. 2001.
    [5].G. Jakimoski and L. Kocarev, “Chaos and cryptography: Block encryption ciphers based on chaotic maps,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 2, pp. 163-169, Feb. 2001.
    [6].R. Schmitz, “Use of chaotic dynamical systems in cryptography,” Journal of the Franklin Institute, vol. 338, no. 4, pp. 429-441, Dec. 2000.
    [7].L. Kocarev, G. Jakimosk, T. Stojanovski and U. Parlitz “From chaotic maps to encryption schemes,” IEEE International Symposium on Circuits and Systems, vol. 4, pp. 514-517, Jun. 1998.
    [8].G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos based cryptosystems,“ International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 2129-2151, Aug. 2006.
    [9].P. R. Sankpal and P. A. Vijaya, “Image Encryption Using Chaotic Maps: A Survey,” Fifth International Conference on Signal and Image Processing, pp. 102-107, 2014.
    [10].M. Ephin, J. A. Joy and N. A. Vasanthi, “Survey of Chaos based Image Encryption and Decryption Techniques,” International Journal of Computer Applications, pp. 1-5, 2013.
    [11].Lorenz, Edward N “Deterministic non-periodic flows.” Journal of the atmospheric sciences, vol. 20, no. 2, pp.130-141, 1963.
    [12].Hsu, Wen-Teng, et al. “From Fault-Diagnosis and Performance Recovery of a Controlled System to Chaotic Secure Communication.” International Journal of Bifurcation and Chaos, vol. 24, no. 12, 2014.
    [13].Mittal, A. K., A. Dwivedi and S. Dwivedi “Parameter adaptation technique for rapid synchronization and secure communication.” The European Physical Journal Special Topics, vol. 223, no. 8, pp.1549-1560, 2014.
    [14].Hu, Hanping, Yashuang Deng and Lingfeng Liu “Counteracting the dynamical degradation of digital chaos via hybrid control.” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 6, pp.1970-1984, 2014.
    [15].Liu, Shutang and Fangfang Zhang “Complex function projective synchronization of complex chaotic system and its applications in secure communication.” Nonlinear Dynamics, vol. 76, no. 2, pp.1087-1097, 2014.
    [16].Padmanaban, E., Stefano Boccaletti and S. K. Dana “Emergent hybrid synchronization in coupled chaotic systems.” American Physical Society, vol. 91, no. 2, 2015.
    [17].Mahmoud, Gamal M., Emad E. Mahmoud and Ayman A. Arafa “Passive control of n-dimensional chaotic complex nonlinear systems.” Journal of Vibration and Control, 1077546312439430, 2012.
    [18].Hung, Meei-Ling, and Her-Terng Yau “Circuit Implementation and Synchronization Control of Chaotic Horizontal Platform Systems by Wireless Sensors.” Mathematical Problems in Engineering, 2013.
    [19].Eskov, V. M., et al. “Measurement of Chaotic Dynamics for Two Types of Tapping as Voluntary Movements.” Measurement Techniques, vol. 57, no. 6, pp.720-724, 2014.
    [20].Bruin, Henk, et al. “On the chaotic behavior of the primal–dual affine–scaling algorithm for linear optimization.” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 24, no. 4, 2014.
    [21].Huan, Song-Mei and Xiao-Song Yang “Existence of Chaotic Invariant Set in a Class of 4-Dimensional Piecewise Linear Dynamical Systems.” International Journal of Bifurcation and Chaos, vol. 24, no. 12, 2014.
    [22].Ghaemi, Mostafa, Seyyed Kamal Hosseini-Sani and Mohammad Hassan Khooban “Direct adaptive general type-2 fuzzy control for a class of uncertain non-linear systems.” IET Science, Measurement & Technology, vol. 8, no. 6, pp.518-527, 2014.
    [23].Kocamaz, Uğur Erkin, Yılmaz Uyaroğlu and Hakan Kizmaz “Control of Rabinovich chaotic system using sliding mode control.” International Journal of Adaptive Control and Signal Processing, vol. 28, no. 12, pp.1413-1421, 2014.
    [24].Vaidyanathan, Sundarapandian and Sivaperumal Sampath “Sliding mode controller design for the global chaos synchronization of Coullet systems.” Advances in Computer Science and Information Technology. Networks and Communications, vol. 84, pp.103-110, 2012.
    [25].Wei, Qiang, Xing-yuan Wang and Xiao-peng Hu “Adaptive hybrid complex projective synchronization of chaotic complex system.” Transactions of the Institute of Measurement and Control, vol. 36, no. 8, pp.1093-1097, 2014.
    [26].Prasad, Lal Bahadur, Hari Om Gupta and Barjeev Tyagi “Application of policy iteration technique based adaptive optimal control design for automatic voltage regulator of power system.” International Journal of Electrical Power & Energy Systems, vol. 63, pp.940-949, 2014.
    [27].Qiang, Chen, Nan Yu-Rong and Xing Ke-Xin “Adaptive sliding-mode control of chaotic permanent magnet synchronous motor extended state observer.” Acta Phys. Sin, vol. 63, no. 22, 2014.
    [28].Yassen, M. T. “Controlling, synchronization and tracking chaotic Liu system using active backstepping design.” Physics Letters A 360.4 (2007): 582-587.
    [29].M. M. El-Dessoky, M.T. Yassen, and E.S. Aly. ”Bifurcation analysis and chaos control in Shimizu-Morioka chaotic system with delay feedback,” Applied Mathematics and Computation, vol. 243, pp.283-297, 2014.
    [30].Xiaohui Tan, Jiye Zhang and Yiren Yang, “Synchronizing chaotic systems using backstepping design.” Chaos Solitons & Fractals, vol. 16, pp.37-45, 2003.
    [31].Yassen, M. T. “Chaos control of chaotic dynamical systems using backstepping design.” Chaos Solitons & Fractals, vol. 27, pp.537-548, 2006.
    [32].Ju H. Park “Synchronization of Genesio chaotic system nia backstepping approach.” Chaos Solitons & Fractals, vol.27, pp.1369-1375, 2006.
    [33].Luo Runzi, Wang Yinglan and Deng Shicheng “Combination synchronization of three classic chaotic systems using active backstepping desugn.” American Institute of Physics, Chaos 21, 043114 (2011)
    [34].F. Farivar, M. A. Nekoui, M. A. Shoorehdeli and M. T. Teshnehlab “Modified projective synchronization of chaotic dissiptaive gyroscope systems via backstepping controle.” Indian J Phys, 86(10), PP.901-906, 2012.
    [35].C. Wang and S. S. Ge “Adaptive synchronization of uncertain chaotic system via backstepping design.” Chaos Solitons & Fractals, vol. 12, pp.1199-1206, 2001.
    [36].Yuhua Xu, Wuneng Zhou, Jian’an Fang and Wen Sun “Adaptive bidirectionally coupled synchronization of chaotic systems with unknown parameters.” Nonlinear Dyn, vol. 66, pp.67-76, 2011.
    [37].Shih-Yu Li, Cheng-Hsiung Yang, Chin-Teng Lin, Li-Wei Ko and Tien-Ting Chiu “Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy.” Nonlinear Dyn, vol. 70, pp.2129-2143, 2012.
    [38].Zhengqiang Zhang, Ju H. Park and Hanyong Shao “Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls.” Nonlinear Dyn, vol. 81, pp.695-706, 2015.
    [39].Cheng-Hsiung Yang, Tsung-Wen Chen, Shih-Yu Li, Ching-Ming Chang and Zheng-Ming Ge “Chaos generalized synchronization of an inertial tachometer with new Mathieu-Van der Pol systems as functional system by GYC partial region stability theory.” Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp.1355-1371, 2012.
    [40].Chun-Yu Chian and Zheng-Ming Ge “Chaos, Pragmatical Hybrid Projective Generalized and Symplectic Synchronization, Generalized Synchronization and Control by GYC Partial Region Stability Theory and Boids Control of Chaos for a Tachometer System.” National Chiao Tung University, 2007.
    [41].Jing Zhou and ChangyunWen “Adaptive Backstepping Control of Uncertain Systems.” Springer 2008, ISBN 978-3-540-77806-6.
    [42].R. Ramesh Babu and R. Karthikeyan “Adaptive Synchronization of Novel Chaotic System and its FPGA Implementation.” Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), International Conference on 6-8 May 2015, ISBN 978-1-4799-9854-8, pp. 489-454, IEEE.
    [43].Alma Y. Alanis, Edgar N. Sanchez and Alexander G. Loukianov “Discrete-Time Adaptive Backstepping Nonlinear Control vua High-Oder Neural Networks.” IEEE Transactions on Neural Networks, vol. 18, no. 4, 2007.
    [44].Ismail Koyuncu, Ahmet Turan Ozcerit and Ihsan Pehlivan “Implementation of FPGA-based real time novel chaotic oscillator.” Nonlinear Dyn, vol. 77, pp.49-59, 2014.
    [45].E. Tlelo-Cuautle, J. J. Rangel-Magdaleno, A. D. Pano-Azucena, P. J. Obeso-Rodelo and J. C. Nunez “FPGA realization of multi-scroll chaotic oscillators” Communications in Nonlinear Science and Numerical Simulation, vol. 27, pp. 66-80, 2015.
    [46].Qingsong Xu and Yangmin Li “Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis” IEEE Transactions on Control Systems Technology, vol. 20, no.4, pp.983-994, 2012.
    [47].Chih-Jer Lin and Shu-Yin Chen “Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage” Mechatronics, vol. 19, no. 6, pp.829-839, 2009.
    [48].Zbigniew Galias and Xinghuo Yu “Euler’s discretization of single input sliding-mode control systems” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.1726-1730, 2007.
    [49].Seon-Hwan Hwang, Xiaohu Liu, Jang-Mok Kim and Hui Li “Distributed digital control of modular-based solid-state transformer using DSP+ FPGA” IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp.670-680, 2012.
    [50].Aguirre, Miguel Pablo, Laura Calvino, and María Inés Valla “Multilevel current-source inverter with FPGA control.” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp.3-10, 2013.
    [51].Curkovic, Milan, Karel Jezernik, and Robert Horvat “FPGA-based predictive sliding mode controller of a three-phase inverter.” IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp.637-644, 2013.
    [52].www.terasic.com.tw
    [53].Qingsong Xu “Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control.” IET Control Theory and Applications, vol. 7, no. 18, pp.2153-2163, 2013.
    [54].Wang, Xingyuan and Dapeng Luan “A novel image encryption algorithm using chaos and reversible cellular automata.” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 11, pp.3075-3085, 2013.
    [55].Song, Chun-Yan, Yu-Long Qiao and Xing-Zhou Zhang “An image encryption scheme based on new spatiotemporal chaos.” Optik-International Journal for Light and Electron Optics, vol. 124, no. 18, pp.3329-3334, 2013.
    [56].Fu, Chong, et al. “A novel chaos-based bit-level permutation scheme for digital image encryption.” Optics Communications, vol. 284, no. 23, pp.5415-5423, 2011.
    [57].E. Tlelo-Cuautle, V. H. Carbajal-Gomez, P. J. Obeso-Rodelo, J. J. Rangel-Magdaleno and J. C. Núñez-Pérez “FPGA realization of a chaotic communication system applied to image processing.” Nonlinear Dynamics, vol. 82, no. 4, pp.1879-1892, 2015.
    [58].Masmoudi, Atef and William Puech “Lossless chaos-based crypto-compression scheme for image protection.” IET Image Processing, vol. 8, no. 12, pp.671-686, 2014.
    [59].C. E. Shannon “Communication theory of secrecy system” Bell System Technical Journal, vol. 28, no. 4, pp.656-715, 1949.
    [60].Z.-M. Ge and H.-K. Chen, “Three asymptotical stability theorems on partial region with applications”, Japanese Journal of Applied Physics, vol. 37, pp.2762–2773, 1998.

    無法下載圖示 全文公開日期 2021/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE