簡易檢索 / 詳目顯示

研究生: 柯佳安
Jia-An Ke
論文名稱: 可見光至近紅外波段高光譜儀之光柵間距優化與成像分析
Grating Spacing Optimization for a Hyperspectral Imaging System in Visible and Near Infrared Band and Its Imaging Analysis
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 84
中文關鍵詞: 高光譜儀影像遙測成像斑點繞射極限前級光學系統光譜解析度
外文關鍵詞: Hyperspectral imaging, remote sensing, spot diagram, diffraction limit, fore optics, spectral resolution.
相關次數: 點閱:870下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對飛行高度為6000 ft,飛行速度為100 kts (51.4 m/s)的飛機,設計一套高光譜儀遙測系統,利用已知飛行高度和飛行速度,搭配選用的偵測器及組件,針對高光譜儀系統進行設計,利用光學模擬軟體Code V建立模型,藉由調變光柵條紋間距,分析模型之成像RMS斑點大小、光柵製程時間、系統大小等規格,建立出符合設計規範的高光譜儀系統。
    成像解析度分析部分,同時考慮成像斑點解析度、繞射極限解析度、以及前級光學系統解析度進行分析,設計出一套用於機載光譜遙測的Offner高光譜儀系統,適用於波段400 – 1000 nm,光柵條紋間距為10 μm,成像端展開的光譜長度範圍為6.054 mm,系統像素規格為1360 × 1040,其每個基本像素大小為12.9 μm,系統體積大小約為20 cm × 20 cm × 10 cm。
    光譜解析度在1.52 nm至1.79 nm之間,水平方向影像之斑點大小在26.36 μm至35.14 μm之間,垂直方向影像之斑點大小在24.49 μm至31.67 μm之間。
    針對Offner光譜儀空拍遙測系統,考慮空拍飛機飛行高度及飛行速度、偵測器規格、系統大小、製作成本等因素,在Code V中模擬優化,再分析驗證,本研究建立了一套完整的設計流程。


    A remote hyperspectral imaging (HSI) system is designed in this paper for an airplane flying at 6000 feet in altitude and at speed of 100 knots (51.4 m/s). In order to design the HSI optical system, an optical design software, Code V, is used to build up an optical model. The spot size, machine time and system size versus grating pitch and analyzed. The effects of pixel number and pixel size are also taken into account.
    Based on the required resolution of the system, the resolution analysis is divided into three parts, including resolution of spot size, resolution of diffraction limit and resolution of fore optics. The grating spacing is 10 μm. It takes a distance of 6.054 mm in the detector plane to cover the whole spectrum range (400 – 1000 nm). The pixel number is 1360 × 1040 with a pixel size of 12.9 μm. The system size is roughly 20 cm × 20 cm × 10 cm.
    The resolution of the spectral is between 1.52 nm to 1.79 nm. The sagittal spot size range is from 26.36 μm to 35.14 μm. The meridional spot size range is from 24.49 μm to 31.67 μm.
    In this paper, three major achievements are established, including (1) a design flow of an remote HSI system; (2) an procedure of building and optimizing Offner model and (3) spectral resolution analysis model on Code V.

    致謝III 摘要IV AbstractV 目錄VI 圖目錄VIII 表目錄XI 第一章 序論1 1.1 研究背景1 1.2 研究目的2 1.3 本文架構2 第二章 研究流程3 2.1 研究流程圖3 第三章 光譜儀偵測器組件系統分析4 3.1 偵測器組件系統選擇4 3.2 前置光學系統放大率(M_FO)原理推導8 3.3 前置光學系統視角(FOV_Lens)、地面限制最大長度(G.L.)、與狹縫限制最大長度推導(S.L.)原理推導9 3.4 像素處理(Bining)單位地面長度(GSD)及總拍攝地面長度(Swath Width)原理推導11 3.5 偵測器視角(FOV_Sensor)及單位像素對應視角(IFOV) 原理推導14 3.6 推掃參數(Push Broom Parameter)原理推導15 3.7 光譜儀系統分析16 第四章 系統模擬分析20 4.1 系統參數設計20 4.2 系統模型建立25 4.3 系統模型優化29 第五章 模型參數調變分析32 5.1 系統大小分析32 5.2 元件曲率半徑及大小分析34 5.3 光柵製程時間39 5.4 閃耀光柵分析43 5.5 成像斑點大小46 第六章 解析度分析49 6.1 斑點大小光譜解析度分析51 6.2 繞射極限光譜解析度分析65 6.3 前級光學系統光譜解析度分析68 6.4 系統總光譜解析度分析71 6.5 斑點大小影像總解析度分析74 6.6 漸暈現象(Vignetting)分析77 第七章 結論82 參考文獻83

    [1] 徐百輝,「大地的辨識密碼-高光譜影像」,科學發展,第四百一十六期,第13-19頁 (2007)。
    [2] 李龍正,「高光譜影像儀發展及影像市場前景」,科儀新知,第二十六卷,第二期,第50-57頁 (2004)。
    [3] R. Serway, and J. Jewett, Physics for Scientists and Engineers with Modern Physics, Cengage Learning, Boston, USA. pp. 1091-1095 (2013).
    [4] T. Zeniya, H. Watabe, H. Kudo, Y. Hirano, K. Minato, and H. Iida, “Combination of a High Resolution Detector with Small FOV and a Low Resolution Detector with Large FOV for High Resolution and Quantitative SPECT,” IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, pp. 5229-5321 (2008).
    [5] E. S. Eid, “Study of Limitations on Pixel Size of Very High Resolution Image Sensors,” Eighteenth National Radio Science Conference, Mansoura, USA, pp. 15-28 (2001).
    [6] P. Mouroulis, and M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Optical Engineering, Vol. 39, No. 3, pp. 808-816 (2000).
    [7] T. Khuon, R. Rand, J. Greer, and E. Truslow, “Distributed Adaptive Spectral and Spatial Sensor Fusion for Super-resolution Classification,” Applied Imagery Patterm Recongnition WorkShop, Washington, USA, pp. 1-8 (2012).
    [8] X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, Vol. 14, No. 20, pp. 9156-9168 (2006).
    [9] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 460-464 (2002).
    [10] Y. Hao, J. Yang, X. Jiang, W. Zheng,J. Zhou, H. Zhou, and M. Wang, “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, Shanghai, China, pp. 339-341 (2007).
    [11] J. H. Wen, L. P. Jia, and P. Ling, “Study On Making High Side-Mode Suppression Ratio Fiber Bragg Grating,” International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, pp. 4014-4016 (2011).
    [12] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 471-474 (2002).
    [13] M. Braun, W. W. Roeck, G. D. Gillan, and J. G. Pearce, “RMS Focal Spot : The REAL Focal Spot,” IEEE Transactions on Nuclear Science, Vol. 27, No. 3, pp. 1057-1063 (1980).
    [14] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 476-481 (2002).
    [15] J. M. Liu, “Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes” Optics Letters,Vol. 7, No. 5, pp. 196-198 (1982).
    [16] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New Jersey, pp. 80-107 (2013).
    [17] 洪靖凱,「Offner光譜儀於波段400 – 1000 nm之設計與成像分析」,碩士論文,國立台灣科技大學,台北 (2015)。
    [18] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol. 3, pp. 286-310 (2013).

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE