簡易檢索 / 詳目顯示

研究生: Satita Gerdsapaya
Satita Gerdsapaya
論文名稱: Au@PPy Core/Shell Nanoparticle for Sensitive EC-SERS Based Determination of Cortisol in Saliva
Au@PPy Core/Shell Nanoparticle for Sensitive EC-SERS Based Determination of Cortisol in Saliva
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
周澤川
Tse-Chuan Chou
蔡孟哲
Meng-Che Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 112
中文關鍵詞: SERSEC-SERSAu@PPy core/shell nanoparticlesAu@PPy-CMab nanoparticlesImmunosensorRhodamine 6G (R6G)CortisolSaliva
外文關鍵詞: SERS, EC-SERS, Au@PPy core/shell nanoparticles, Au@PPy-CMab nanoparticles, Immunosensor, Rhodamine 6G (R6G), Cortisol, Saliva
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 皮質醇普遍稱為逆境激素,其變異或異常被歸因於疾病與綜合症狀,因此皮質醇檢測對於篩檢與監測各種健康狀況是極為重要的。我們的工作使用電化學表面增強拉曼散射(EC-SERS)法開發Au @ PPy核/殼NP,用於檢測唾液中的皮質醇。AuNPs運用R6G於評估SERS的增強因子,其塗佈於平均大小為46nm的PPy殼厚度,其PPy殼厚度取決於Py的聚合時間與單體體積。Au @ PPy(〜46 nm核心/〜1 nm外殼厚度)可獲得的最高增強因子高達1.74 x 106。我們選擇其條件去結合抗體(CMab)與EC-SERS的應用。 EC-SERS探針源自抗體-抗原相互作用,從而增加了皮質醇檢測的選擇性與靈敏度,結果指出使用 EC-SERS法的Au @ PPy-CMab可在有限且寬廣的放範圍下6.69 x 10-12 M偵測皮質醇,並可用於檢測人體唾液中的皮質醇。我們的工作提出SERS探針的快速製造法,且可應用於天然基質中監測疾病與綜合症狀進展的感測方法。


    Cortisol is commonly called the stress hormone. Its variations or abnormalities might give rise to diseases and syndromes. Thus, detecting cortisol with high sensitivity and confidence is very important for diagnosis and in monitoring various health conditions. This work is to develop Au@PPy core/shell NPs with the electrochemical surface-enhancement Raman scattering (EC-SERS) methods for the detection of cortisol in saliva. The synthesized AuNPs with an average size of ~46 nm, coated with various PPy (polypyrrole) shell thickness by varying polymerization time and volume of Py (pyrrole) monomer, are used to evaluate the SERS enhancement factor with R6G. The highest enhancement factor was up to 1.74 x 106 attained with Au@PPy (~46 nm core/~1 nm shell thickness). The coated nanoparticles were conjugated with antibody (CMab) and further applied for EC-SERS. The interaction between antibody-antigen increases the selectivity and sensitivity of the EC-SERS probes for detecting the cortisol. Cortisol can be successfully detected in a wide range of concentrations by the application of Au@PPy-CMab and EC-SERS method, with a limit of detection (LOD) down to 6.69 x 10-12 M. Cortisol levels in human saliva were also tested for verification. Our work presents a rapid fabrication of SERS probes and can be applied as sensor devices for monitoring disease and syndromes progression in natural matrices.

    摘要 I ABSTRACT III ACKNOWLEDGMENTS V TABLE OF CONTENTS VII LIST OF FIGURES XI LIST OF TABLES XVII LIST OF EQUATIONS XIX LIST OF ABBREVIATIONS XXI CHAPTER 1: INTRODUCTION 1 1.1 Background of Raman spectroscopy 1 1.2 Principles of Raman Spectroscopy (RS) 1 1.3 Surface Enhanced Raman Spectroscopy (SERS) 3 1.3.1 SERS enhancement mechanism 5 1.3.1.1 Electromagnetic Enhancement mechanism (EE) 8 1.3.1.2 Chemical Enhancement mechanism (CE) 11 1.3.2 SERS Enhancement Factor (EF) 13 1.4 Electrochemical Surface Enhanced Raman Spectroscopy (EC-SERS) 14 1.4.1 History of EC-SERS 14 1.4.2 Theory of EC-SERS 15 1.4.3 Advantage of EC-SERS 16 1.4.4 Applications of EC-SERS in biosensor 19 1.5 Biocompatibility of Au nanoparticles 20 1.6 Principle of shell-isolated nanoparticle enhanced Raman spectroscopy 20 1.7 Cortisol and bioassay method 21 CHAPTER 2: ADVANTAGES AND CHALLENGES OF STUDY 25 2.1 The purpose of EC-SERS 25 2.2 Cortisol detection 25 2.3 Advantages of AuNPs 26 2.4 Advantages of polypyrrole (PPy) coating 27 2.5 Motivation and objectives of the study 27 2.5.1 Motivation 27 2.5.2 Objectives 28 CHAPTER 3: EXPERIMENTAL SECTION AND CHARACTERIZATION 31 3.1 General experimental section 31 3.1.1 Chemicals and reagents 32 3.1.2 Synthesis of gold nanoparticles (AuNPs) 33 3.2 Synthesis of Au@PPy core/shell nanoparticles 34 3.3 Antibody conjugation with Au@PPy core/shell nanoparticles 34 3.4 Preparation of cortisol standard solution 35 3.5 Saliva sample collection 36 3.6 Preparation of SERS and EC-SERS substrates 36 3.7 Characterization techniques 38 3.7.1 The size distribution of AuNPs 38 3.7.2 Ultraviolet-visible absorption spectroscopy (UV-Vis) 38 3.7.3 Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) measurement 38 3.7.4 Transmission Electron Microscopy (TEM) measurement 38 3.7.5 X-Ray Diffraction (XRD) 39 3.7.6 Fourier Transform Infrared Spectroscopy (FT-IR) 39 3.7.7 SERS measurements 39 3.7.8 Cyclic voltammetry (CV) 39 3.7.9 EC-SERS measurement 40 3.7.10 X-ray Absorption Spectroscopy (XAS) 40 CHAPTER 4: RESULTS AND DISCUSSION 41 4.1 Morphology, optical absorption properties and effect of the shell thickness on the SERS signal of Au@PPy core/shell nanoparticles 41 4.1.1 AuNPs 41 4.1.2 Au@PPy 42 4.1.2.1 PPy coating with different polymerization time 42 4.1.2.2 PPy coating with different volume of Py monomer 48 4.2 SERS spectra of cortisol on the Au@PPy-CMab nanoparticles 56 4.3 The electro-active behavior of Au@PPy-CMab nanoparticles 63 4.4 Effect of potential on the EC-SERS signal 64 4.5 EC-SERS spectra of cortisol on the Au@PPy-CMab nanoparticles 66 4.6 The reproducibility of Au@PPy-CMab 72 CHAPTER 5: CONCLUSIONS AND FUTURE OUTLOOK 75 5.1 Conclusions 75 5.2 Future outlook 75 REFERENCE: 77 APPENDIX: 85

    1. C.V. Raman, A new radiation. Indian J. Phys., 1928. 2: p. 368-376.
    2. C.V. Raman, Part II.—The Raman effect. Investigation of molecular structure by light scattering. J Transactions of the Faraday Society, 1929. 25: p. 781-792.
    3. M. Procházka, Surface-enhanced raman spectroscopy. Biological medical physics, biomedical engineering, 2016. 1: p. 7-18.
    4. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002. 14(18): p. R597-R624.
    5. M.F. Cardinal, E. Vander Ende, R.A. Hackler, M.O. Mcanally, P.C. Stair, G.C. Schatz, and R.P. Van Duyne, Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews, 2017. 46(13): p. 3886-3903.
    6. M. Fleischmann, P. Hendra, and A. Mcquillan, RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC. Chemical physics letters, 1974. 26(2): p. 163-166.
    7. D.L. Jeanmaire and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry interfacial electrochemistry, 1977. 84(1): p. 1-20.
    8. M.G. Albrecht and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
    9. S. Schlücker, Surface‐Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 2014. 53(19): p. 4756-4795.
    10. D.D. Tuschel, J.E. Pemberton, and J.E. Cook, SERS and SEM of roughened silver electrode surfaces formed by controlled oxidation-reduction in aqueous chloride media. Langmuir, 1986. 2(4): p. 380-388.
    11. S.E. Hunyadi and C.J. Murphy, Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering. Journal of Materials Chemistry, 2006. 16(40): p. 3929-3935.
    12. H. Wei, J. Li, Y. Wang, and E. Wang, Silver nanoparticles coated with adenine: preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology, 2007. 18(17): p. 175610-175615.
    13. M. Kerker, Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids. Accounts of Chemical Research, 1984. 17(8): p. 271-277.
    14. K. Wang, S. Li, M. Petersen, S. Wang, and X. Lu, Detection and characterization of antibiotic-resistant bacteria using surface-enhanced raman spectroscopy. Nanomaterials, 2018. 8(10): p. 1-21.
    15. P. Lee and D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 1982. 86(17): p. 3391-3395.
    16. C.J. Addison and A.G. Brolo, Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering. 2006, J Langmuir. p. 8696-8702.
    17. A.J. Haes, C.L. Haynes, A.D. Mcfarland, G.C. Schatz, R.R. Van Duyne, and S.L. Zou, Plasmonic materials for surface-enhanced sensing and spectroscopy. Mrs Bulletin, 2005. 30(5): p. 368-375.
    18. C. Farcau and S. Astilean, Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates. Journal of Physical Chemistry C, 2010. 114(27): p. 11717-11722.
    19. J.I. Gersten, The effect of surface roughness on surface enhanced Raman scattering. The Journal of Chemical Physics, 1980. 72(10): p. 5779-5780.
    20. J. Gersten and A. Nitzan, Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. The Journal of Chemical Physics, 1980. 73(7): p. 3023-3037.
    21. S. Mccall and P. Platzman, Raman scattering from chemisorbed molecules at surfaces. Physical Review B, 1980. 22(4): p. 1660-1662.
    22. M. Kerker, O. Siiman, and D. Wang, Effect of aggregates on extinction and surface-enhanced Raman scattering spectra of colloidal silver. The Journal of Physical Chemistry, 1984. 88(15): p. 3168-3170.
    23. C. Zong, M. Xu, L.J. Xu, T. Wei, X. Ma, X.S. Zheng, R. Hu, and B. Ren, Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews, 2018. 118(10): p. 4946-4980.
    24. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter, 1992. 4(5): p. 1143-1212.
    25. A. Campion and P. Kambhampati, Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250.
    26. P. Kambhampati, C. Child, M.C. Foster, and A. Campion, On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. The Journal of chemical physics, 1998. 108(12): p. 5013-5026.
    27. E.C. Le Ru, E. Blackie, M. Meyer, and P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    28. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, A review on surface-enhanced Raman scattering. Biosensors, 2019. 9(2): p. 1-99.
    29. R. Parsons, Comprehensive treatise of electrochemistry (experimental method in electrochemistry and electrodes: experimental techniques.). Plenum press, 1986. 8-9: p. 411-414.
    30. Z.Q. Tian, B. Ren, and D.Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. 2002, journal of physical chemistry b. p. 9463-9483.
    31. Z.Q. Tian, B. Ren, J.F. Li, and Z.L. Yang, Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chemical Communications, 2007(34): p. 3514-3534.
    32. J.O'm Bockris, B.E. Conway, E. Yearger, and R.E. White, Comprehensive Treatise Electrochemistry. 1981. 3: p. 521-535.
    33. R.J. Gale, Spectroelectrochemistry: theory and practice. 1988. 1: p. 263-344.
    34. J.R. Lombardi and R.L. Birke, Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. The Journal of chemical physics, 2007. 126(24): p. 2447091-2447099.
    35. D.Y. Wu, J.F. Li, B. Ren, and Z.Q. Tian, Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews, 2008. 37(5): p. 1025-1041.
    36. R.J. Gale, Spectroelectrochemistry: theory and practice. 1988, Springer Science & Business Media: New York. p. 263-344.
    37. S. Lecomte, P. Hildebrandt, and T. Soulimane, The electron transfer dynamics of cytochrome c 552 from Thermus thermophilus probed by time-resolved surface enhanced resonance Raman spectroscopy, in Spectroscopy of Biological Molecules: New Directions. 1999, Springer. p. 103-106.
    38. X. Qian, X.H. Peng, D.O. Ansari, G.Q. Yin, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, and S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology, 2008. 26(1): p. 83-90.
    39. B. Greene, D. Alhatab, C. Pye, and C. Brosseau, Electrochemical-Surface Enhanced Raman Spectroscopic (EC-SERS) Study of 6-Thiouric Acid: A Metabolite of the Chemotherapy Drug Azathioprine. The Journal of Physical Chemistry C, 2017. 121(14): p. 8084-8090.
    40. T.P. Lynk, C.S. Sit, and C.L. Brosseau, Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Analytical chemistry, 2018. 90(21): p. 12639-12646.
    41. S.D. Bindesri, D.S. Alhatab, and C.L. Brosseau, Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics. Analyst, 2018. 143(17): p. 4128-4135.
    42. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Letters, 2005. 5(3): p. 515-518.
    43. P. Raveendran, J. Fu, and S.L. Wallen, A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chemistry, 2006. 8(1): p. 34-38.
    44. J. Krajczewski and A. Kudelski, Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Frontiers in Chemistry, 2019. 7: p. 1-6.
    45. J. Oosterlaan, H.M. Geurts, D.L. Knol, and J.A. Sergeant, Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry research, 2005. 134(1): p. 1-10.
    46. M. Vogeser, J. Groetzner, C. Küpper, and J. Briegel, The serum cortisol: cortisone ratio in the postoperative acute-phase response. Hormone Research in Paediatrics, 2003. 59(6): p. 293-296.
    47. C.E. Van, K. Wierckx, T. Fiers, H. Segers, E. Vandersypt, and J. Kaufman, Salivary cortisol and testosterone: a comparison of salivary sample collection methods in healthy controls, in 13th European Congress of Endocrinology. 2011. p. 355.
    48. M. Sekar, R. Sriramprabha, P.K. Sekhar, S. Bhansali, N. Ponpandian, M. Pandiaraj, and C. Viswanathan, Towards Wearable Sensor Platforms for the Electrochemical Detection of Cortisol. Journal of The Electrochemical Society, 2020. 167(6): p. 067508-067523.
    49. S. Sakihara, K. Kageyama, Y. Oki, M. Doi, Y. Iwasaki, S. Takayasu, T. Moriyama, K. Terui, T. Nigawara, and Y. Hirata, Evaluation of plasma, salivary, and urinary cortisol levels for diagnosis of Cushing’s syndrome. Endocrine journal, 2010. 57(4): p. 331-337.
    50. S.G. Penn, L. He, and M.J. Natan, Nanoparticles for bioanalysis. Current Opinion in Chemical Biology, 2003. 7(5): p. 609-615.
    51. N.A. Masdor, Z. Altintas, and I.E. Tothill, Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni. Chemosensors, 2017. 5(2): p. 15.
    52. S.K. Arya, A. Dey, and S. Bhansali, Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosensors & Bioelectronics, 2011. 28(1): p. 166-173.
    53. S.P. Xu, X.H. Ji, W.Q. Xu, X.L. Li, L.Y. Wang, Y.B. Bai, B. Zhao, and Y. Ozaki, Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst, 2004. 129(1): p. 63-68.
    54. A. Wieckowski, Interfacial electrochemistry: theory: experiment, and applications. 1999. 1(1): p. 131-146.
    55. A. Kumar, S. Aravamudhan, M. Gordic, S. Bhansali, and S.S. Mohapatra, Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized nanowire. Biosensors Bioelectronics, 2007. 22(9-10): p. 2138-2144.
    56. R.C. Stevens, S.D. Soelberg, S. Near, and C.E. Furlong, Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Analytical chemistry, 2008. 80(17): p. 6747-6751.
    57. S.K. Pasha, A. Kaushik, A. Vasudev, S.A. Snipes, and S. Bhansali, Electrochemical immunosensing of saliva cortisol. Journal of The Electrochemical Society, 2013. 161(2): p. B3077-B3082.
    58. X. Liu, S.P. Hsu, W.C. Liu, Y.M. Wang, X. Liu, C.S. Lo, Y.C. Lin, S.C. Nabilla, Z. Li, and Y. Hong, Salivary electrochemical cortisol biosensor based on tin disulfide Nanoflakes. Nanoscale research letters, 2019. 14(1): p. 1-9.
    59. T.J. Moore and B. Sharma, Direct Surface Enhanced Raman Spectroscopic Detection of Cortisol at Physiological Concentrations. Analytical Chemistry, 2019. 92(2): p. 2052-2057.
    60. A.J. Steckl and P. Ray, Stress biomarkers in biological fluids and their point-of-use detection. ACS sensors, 2018. 3(10): p. 2025-2044.
    61. D. Appel, R.D. Schmid, C.-A. Dragan, M. Bureik, and V.B. Urlacher, A fluorimetric assay for cortisol. Analytical bioanalytical chemistry, 2005. 383(2): p. 182-186.
    62. R. Gatti, E. Cappellin, B. Zecchin, G. Antonelli, P. Spinella, F. Mantero, and E.F. De Palo, Urinary high performance reverse phase chromatography cortisol and cortisone analyses before and at the end of a race in elite cyclists. Journal of Chromatography B, 2005. 824(1-2): p. 51-56.
    63. N. Suda, H. Sunayama, Y. Kitayama, Y. Kamon, and T. Takeuchi, Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. Royal Society open science, 2017. 4(8): p. 1-10.
    64. S.K. Arya, G. Chornokur, M. Venugopal, and S. Bhansali, Antibody functionalized interdigitated μ-electrode (IDμE) based impedimetric cortisol biosensor. Analyst, 2010. 135(8): p. 1941-1946.
    65. A. Apilux, S. Rengpipat, W. Suwanjang, and O. Chailapakul, Development of competitive lateral flow immunoassay coupled with silver enhancement for simple and sensitive salivary cortisol detection. Journal of EXCLI 2018. 17: p. 1198-1209.

    無法下載圖示 全文公開日期 2025/08/22 (校內網路)
    全文公開日期 2025/08/22 (校外網路)
    全文公開日期 2025/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE