簡易檢索 / 詳目顯示

研究生: 林柏廷
Po-Ting Lin
論文名稱: 石墨烯防蝕塗料之開發與研究
Study on Fabrication of Anti-corrosion Graphene-contained Paint
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 李豪業
Hao-Yeh Lee
何郡軒
Jinn-Hsuan Ho
陳世勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 石墨烯奈米碳管鋅粉防蝕塗料
外文關鍵詞: graphene, carbon nanotubes, zinc powder, anti-corrosion paint
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 每年因為腐蝕造成的經濟損失相當可觀,腐蝕組織(National association of corrosion engineers, NACE International)調查,約佔全球生產總值3.4%,因此,2025年全球防腐塗料的市場將高達375.9億美元。2017年初美國通過禁止出售含有二苯甲酮、桂皮酸鹽的防曬乳產品,係因該類化學物質會影響珊瑚等生物生長,破壞海洋生態,而其中二苯甲酮為塗料中常用之紫外線吸收劑,為抗蝕塗料的重要配方,本研究以發展環境友善塗料為目標。
    本研究探討以石墨烯、奈米碳管添加於富鋅環氧底漆,並以石墨烯取代傳統的紫外線吸收劑,添加於有機矽環氧面漆,並以耐候測試、鹽霧腐蝕測試、附著力測試等試驗,評估各配方塗料之性能,藉由改變石墨烯、奈米碳管、鋅粉、樹脂等關鍵因子,進一步優化配方。並於測試中納入多種市售產品做對比,其中包含PPG、Sherwin-Williams、關西等國際塗料大廠。
    各種測試結果顯示,本研究之塗料均具有優異防蝕耐候之功效,其中石墨烯、奈米碳管以及鋅粉為主要抗蝕主劑,其機制分別為阻隔外界水氣、空氣及增加電連續性、陰極保護。此外,除實驗室內模擬加速測試之外,發展之塗料也於今年五月實地塗佈於彰濱工業區之儲槽,未來將進一步用於位於高雄洲際碼頭之儲槽,並進行生產製程放大,以達商品化之目的。


    The economic losses resulted from corrosion are significant every year, which is 3.4% of global GDP, reported by National association of corrosion engineers (NACE International). The global market size of anti-corrosion paint will be hence increased to USD 37.59 billion in 2025. At the beginning of 2017, the oxybenzone and octinoxate are prohibited as additive for sun lotion in the United States, due to their negative effect on the growth of corals and marine ecology. However, the oxybenzone with excellent property for ultraviolet absorption is an important ingredient of anti-corrosion paint. The goal of this work is to develop the environmentally friendly paint.
    In this study, graphene and carbon nanotubes were used as additives for zinc-rich epoxy paint. In the development of silicone epoxy topcoat, graphene was also applied to replace traditional ultraviolet absorber. The prepared paints were evaluated by weather resistance test, corrosion resistance test, adhesion test, etc. Furthermore, paint formulas were optimized by adjusting key factors such as amount of graphene, amount of zinc powder, and amount of resin. Various commercially available products, PPG, Sherwin-Williams, and Kansai Paints, were selected as reference and evaluated in the same time for comparison.
    The test results showed the prepared paints exhibited good corrosion and weather resistance. Graphene, carbon nanotubes and zinc powder are the major anti-corrosive ingredients. The mechanisms were attributed to blocking external moisture and air, increasing electrical continuity, and cathodic protection. In addition to accelerated tests in laboratory, these prepared paints were also applied to the storage tanks in Changhua coastal industrial park in this May. It was planned to apply to the tanks in Kaohsiung intercontinental container terminal in the near future as well. The results of this work showed the practicability for mass production and commercialization.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章、緒論 1 1.1前言 1 1.1.1塗料的功能 1 1.1.2塗料發展 2 1.1.3塗料組成 3 1.2研究目的與動機 4 第二章、理論基礎與回顧 5 2.1腐蝕簡介 5 2.1.1腐蝕分類 5 2.2石墨烯與氧化石墨烯及奈米碳管簡介 8 2.2.1石墨烯簡介 8 2.2.2氧化石墨烯簡介 10 2.2.3奈米碳管簡介 11 2.3紫外線吸收劑 12 2.3.1紫外線吸收劑簡介 12 2.3.2紫外線吸收劑種類 13 2.3.3紫外線吸收劑作用原理 14 2.3.4紫外線吸收劑危害 15 2.4重防蝕塗料 16 2.4.1重防蝕塗料簡介 16 2.4.2環氧富鋅塗料簡介 16 2.4.3石墨烯及奈米碳管於環氧富鋅塗料之應用 17 第三章、實驗材料與方法 18 3.1實驗規劃 18 3.2實驗藥品 19 3.3實驗儀器 21 3.3.1儀器設備 21 3.3.2分析儀器 22 3.4實驗步驟 27 3.4.1碳鋼基板與不鏽鋼基板清洗 27 3.4.2富鋅環氧底漆試片製備 27 3.4.3有機矽環氧面漆試片製備 27 3.4.4水性無機鋅粉防蝕塗料試片製備 28 第四章、結果與討論 29 4.1石墨烯物性分析 29 4.1.1導電度分析 29 4.1.2形貌分析 29 4.1.3拉曼光譜儀分析結果 31 4.1.4 元素分析儀分析結果 32 4.1.5 石墨烯紫外線吸收效果分析 32 4.2石墨烯分散測試 35 4.3防蝕塗料初始配方及市售防蝕塗料分析 38 4.3.1鹽霧腐蝕測試 38 4.3.2耐候測試 42 4.3.3附著力測試 44 4.3.4撞擊測試 46 4.4第一階段配方優化及分析 46 4.4.1鹽霧腐蝕測試 51 4.4.2附著力測試 53 4.5第二階段配方優化及分析 54 4.5.1 循環老化測試 58 4.5.2 腐蝕電化學分析 69 4.6不同溶劑對之黏度測定 69 第五章、結論與未來展望 70 5.1結論 70 5.1.1石墨烯選用 70 5.1.2分散劑選用及配方評估 70 5.1.3配方優化及實場試驗 70 5.2未來展望 71 參考文獻 72 附錄 76

    [1] 李金桂, 清洗劑、除鏽劑與防鏽劑. 2010.
    [2] 楊聰仁, "腐蝕概論," 防蝕工程, vol. 6, pp. 57-65, 1992.
    [3] 柯賢文, 腐蝕及其防制. 2012.
    [4] A. K. G. K. S. Novoselov, S. V. Morozov, D. Jiang, and S. V. D. Y. Zhang, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-699, 2004.
    [5] A. Al-Jumaili, S. Alancherry, K. Bazaka, and M. V. J. M. Jacob, "Review on the antimicrobial properties of carbon nanostructures," Materials, vol. 10, no. 9, p. 1066, 2017.
    [6] C. Lee, X. Wei, J. W. Kysar, and J. J. s. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, no. 5887, pp. 385-388, 2008.
    [7] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, no. 3, pp. 902-907, 2008.
    [8] K. I. Bolotin, K. J. Sikes, Z. Jiang , M. Klima , G. Fudenberg , J. Hone , P. Kim , H. L. Stormer , "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, no. 9-10, pp. 351-355, 2008.
    [9] L. Qi and L. J. C. J. o. M. R. Xueping, "Qualitative and Quantitative Analysis of Graphene Oxides by UV Spectroscopy," Chinese Journal of Materials Research, vol. 29, no. 2, pp. 155-160, 2015.
    [10] L. Qu, M. Tian, X. Hu, Y. Wang, S. Zhu, X. Guo, G. Han, X. Zhang, K. Sun, X. Tang, "Functionalization of cotton fabric at low graphene nanoplate content for ultrastrong ultraviolet blocking," Carbon, vol. 80, pp. 565-574, 2014.
    [11] N. H. Othman, M. C. Ismail, M. Mustapha, N. Sallih, K. E. Kee, and R. A. J. P. i. O. C. Jaal, "Graphene-based polymer nanocomposites as barrier coatings for corrosion protection," Progress in Organic Coatings, vol. 135, pp. 82-99, 2019.
    [12] L. Cheng, C. Liu, D. Han, S. Ma, W. Guo, H. Cai, X. Wang, "Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings," Journal of Alloys and Compounds, vol. 774, pp. 255-264, 2019.
    [13] H. Hayatdavoudi and M. Rahsepar, "A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate," Journal of Alloys Compounds, vol. 727, pp. 1148-1156, 2017.
    [14] M. J. Yee, N. M. Mubarak, E. C. Abdullah, M. Khalid, R. Walvekar, R. R. Karri, S. Nizamuddin, A. Numan, "Carbon nanomaterials based films for strain sensing application—A review," Nano-Structures & Nano-Objects, vol. 18, p. 100312, 2019.
    [15] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊, vol. 33.2 pp. 163-167, 2011.
    [16] 黃承鈞 and 黃淑娟, "石墨烯材料發展與應用趨勢," 工業材料雜誌, vol. 304, 2012.
    [17] R. K. Singh, R. Kumar, and D. P. J. R. a. Singh, "Graphene oxide: strategies for synthesis, reduction and frontier applications," RSC Advances, vol. 6, no. 69, pp. 64993-65011, 2016.
    [18] H. Kim, A. A. Abdala, and C. W. J. M. Macosko, "Graphene/polymer nanocomposites," Progress in Polymer Science, vol. 43, no. 16, pp. 6515-6530, 2010.
    [19] S. J. n. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
    [20] E. T. Thostenson, Z. Ren, T.-W. J. C. s. Chou, and technology, "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites Science and Technology, vol. 61, no. 13, pp. 1899-1912, 2001.
    [21] J. N. Coleman, U. Khan, W. J. Blau, and Y. K. J. C. Gun’ko, "Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites," Carbon, vol. 44, no. 9, pp. 1624-1652, 2006.
    [22] 馬廣仁, "奈米碳管的性質與應用," 工業材料雜誌, vol. 179, pp. 92-95, 2001.
    [23] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, "Methods for carbon nanotubes synthesis," Journal of Materials Chemistry, vol. 21, no. 40, pp. 15872-15884, 2011.
    [24] J. R. J. J. o. G. R. A. Herman, "Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data," Journal of Geophysical Research, vol. 115, no. D4, 2010.
    [25] T. Charlet. (2019). How to Prevent Sun Damage to your Cars Paint.
    [26] 郭振宇 and 王紅梅, "紫外線吸收劑的研究進展," 甘肅石油和化工, vol. 第3期, 2007.
    [27] B. Herzog, A. Schultheiss, J. J. P. Giesinger, and photobiology, "On the Validity of Beer–Lambert Law and its Significance for Sunscreens," Photochemistry and Photobiology, vol. 94, no. 2, pp. 384-389, 2018.
    [28] M. Hirata-Koizumi, N. Watari, D. Mukai, T. Imai, A. Hirose, E. Kamata, M. Ema, "A 28-day repeated dose toxicity study of ultraviolet absorber 2-(2′-hydroxy-3′, 5′-di-tert-butylphenyl) benzotriazole in rats," Drug and Chemical Toxicology, vol. 30, no. 4, pp. 327-341, 2007.
    [29] C. A. Downs, E. K. Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F. R. Ciner, R. Jeger, Y. Lichtenfeld, C. M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, Y. Loya, "Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US Virgin Islands," Archives of Environmental Contamination and Toxicology, vol. 70, no. 2, pp. 265-288, 2016.
    [30] 魯鋼, 徐翠香, and 宋艷, 塗料化學與塗裝技術基礎. 2012.
    [31] N. LeBozec, D. Thierry, P. L. Calve, J. P. Pautasso, C. Hubert, "Performance of marine and offshore paint systems: Correlation of accelerated corrosion tests and field exposure on operating ships," Materials and Corrosion, vol. 66, no. 3, pp. 215-225, 2015.
    [32] 黃坤, 曾憲光, 裴高峰, 張敬雨, and 石超, "石墨烯/環氧複合導電塗層的防腐性能研究," 塗料工業, vol. 45No.1, 2015.
    [33] S. Shreepathi, P. Bajaj, and B. J. E. A. Mallik, "Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: role of Zn content on corrosion protection mechanism," Electrochimica Acta, vol. 55, no. 18, pp. 5129-5134, 2010.
    [34] S. Park, M. J. J. o. I. Shon, and E. Chemistry, "Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating," Journal of Industrial and Engineering Chemistry, vol. 21, pp. 1258-1264, 2015.
    [35] S. Pourhashem, M. R. Vaezi, A. Rashidi, and M. R. J. C. S. Bagherzadeh, "Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel," Corrosion Science, vol. 115, pp. 78-92, 2017.
    [36] J. Zhang, R. Cui, X. a. Li, X. Liu, and W. J. J. o. M. C. A. Huang, "A nanohybrid consisting of NiPS 3 nanoparticles coupled with defective graphene as a pH-universal electrocatalyst for efficient hydrogen evolution," Journal of Materials Chemistry A, vol. 5, no. 45, pp. 23536-23542, 2017.
    [37] F. T. Johra, J.-W. Lee, W.-G. J. J. o. I. Jung, and E. Chemistry, "Facile and safe graphene preparation on solution based platform," Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 2883-2887, 2014.

    無法下載圖示 全文公開日期 2025/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE