簡易檢索 / 詳目顯示

研究生: 張凱富
Kai-Fu Chang
論文名稱: 利用鋅鈷釩三元素層狀雙氫氧化物改善釩酸鉍光陽極以提升光電化學水分解效率
Ternary zinc-cobalt-vanadium layered double hydroxide modified BiVO4 photoanode for improving photoelectrochemical water splitting
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 鄭淑芬
Soofin Cheng
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 釩酸鉍光電化學水分解LDH產氧觸媒
外文關鍵詞: BiVO4, photoelectrochemical, water splitting, layered double hydroxide, oxygen-evolution catalyst
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今社會快速的發展之下,能源短缺與環境汙染的相關議題漸漸地浮上檯面,因此利用太陽能進行光電化學水分解也成為了廣為人知的研究主題。而BiVO4光陽極已被廣泛用於光電化學水分解的理想材料,但因材料本身有嚴重的電子電洞再結合現象,以及緩慢的與水反應動力學,因此本研究致力於開發一個新穎且有效的觸媒,以改善BiVO4光陽極之光電化學水分解效率。
    本研究利用簡便且快速的電沉積法製備出鋅鈷釩三元素之層狀雙氫氧化物(ZnCoV-LDH),並將其沉積於BiVO4表面上,作為一種新的助催化劑,以提升BiVO4光陽極的光電化學水分解效率。以鹼性的四硼酸鈉為電解液,於1.23 V vs. RHE之下,經改善後的光陽極展現出2.54 mA/cm2的光電流表現,為原始BiVO4光陽極的三倍,且起始電位也向陰極偏移300 mV。此外還發現ZnCoV-LDH將原本BiVO4僅有的27 %電洞注入效率提升至82 %。更值得一提的是,此觸媒在長時間電解反應中展現出優越的穩定性。證明此助催化劑除了能降低動力學屏障以外,更藉由促進電荷分離以抑制被激發後的電荷重組現象,達到穩定BiVO4光陽極的效果,藉此提高水分解效率。此研究不僅提出新穎且有效的助催化劑,更提供一個快速簡便製備氫氧化物材料的方法。


    Bismuth vanadate has been extensively studied as an ideal photoanode material for solar-driven photoelectrochemical (PEC) water splitting but it still suffers from the severe electron-hole recombination and sluggish water oxidation kinetics thus cause low efficiency of PEC water splitting. Therefore, this study is dedicated to explore a new and efficient oxygen evolution cocatalysts for boosting photoelectrochemical (PEC) water splitting of BiVO4 photoanode.
    Herein, a novel ZnCoV layered double hydroxide (ZnCoV-LDH) has been controllably prepared by a facile and rapid electrodeposition method for as a new co-catalyst for enhancing photoelectrochemical water oxidation of BiVO4 photoanode. Upon incorporating ZnCoV-LDH on the surface of BiVO4, the modified photoanode exhibits photocurrent density of 2.54 mA cm−2 (at 1.23 V versus reversible hydrogen electrode), which is 3 times higher than that of bare BiVO4 and 300 mV cathodic shift in onset potential. In addition, ZnCoV-LDH was also found to boost the hole injection efficiency of BiVO4 from 27% up to approximately 82%. More interestingly, the composite electrode demonstrates an reasonably good durability which attain a stable photocurrent density without significant decay during water splitting process. The significant improvement in photocurrent density, hole collection efficiency as well as durability can be ascribled to the fact that ZnCoV-LDH is acting as efficient oxygen evolution catalyst, thereby promotes the separation of photogenerated charges to suppress the recombination phenomenon, and stabilize BiVO4 photoelectrode for enhancing efficiency of water splitting. This work provides not only a demonstration of a novel and promising co-catalyst for PEC water splitting, but also a facile method for rationally designing other hydroxide-based materials.

    摘要 i Abstract ii 總目錄 iv 圖目錄 vii 表目錄 xi 第一章、 緒論 - 1 - 1.1 研究動機 - 1 - 1.2 研究主軸 - 2 - 第二章、 文獻回顧 - 3 - 2.1 光電化學水分解 - 3 - 2.2 BiVO4光陽極之材料特性 - 4 - 2.3 製備BiVO4光陽極之方法及原理 - 5 - 2.3.1 金屬有機沉積法(metal-organic decomposition, MOD) - 5 - 2.3.2 水熱法(hydrothermal) - 5 - 2.3.3 電沉積法(electrodeposition) - 6 - 2.4 BiVO4光陽極之改善方法及原理 - 6 - 2.4.1 改變表面構型(Morphology control) - 6 - 2.4.2 半導體耦合(Heterojunction) - 7 - 2.4.3 金屬離子摻雜(Dopping) - 8 - 2.4.4 添加產氧助催化劑(co-catalyst for oxygen evolution) - 8 - 2.5 產氧助催化劑材料之發想 - 9 - 2.5.1 層狀雙氫氧化物(Layered double hydroxide, LDH)之基本結構與特性 - 9 - 2.5.2 ZnCoV-LDH助產氧催化劑 - 11 - 第三章、 實驗設備及方法 - 15 - 3.1 實驗所需藥品、設備及分析儀器 - 15 - 3.1.1 實驗藥品 - 15 - 3.1.2 實驗設備 - 16 - 3.1.3 分析儀器 - 16 - 3.2 材料製備方法 - 17 - 3.2.1 基材 - 17 - 3.2.2 以電沉積製備多孔結構的BiVO4光陽極 - 17 - 3.2.3 以電沉積製備ZnCo-LDH - 19 - 3.2.4 以電沉積製備ZnCoV-LDH - 20 - 3.3 儀器分析原理 - 21 - 3.3.1 物理化學分析 - 21 - 3.3.2 光電化學分析 (Photoelectrochemical analysis) - 24 - 第四章、 結果與討論 - 29 - 4.1 材料分析 - 29 - 4.1.1 表面構型 - 29 - 4.1.2 結晶型態 - 30 - 4.1.3 可見光吸收度 - 31 - 4.1.4 表面元素價態 - 32 - 4.1.5 光激發螢光光譜 - 33 - 4.2 光電化學表現 - 34 - 4.3 反應機構探討 - 36 - 4.3.1 與水反應動力學 - 36 - 4.3.2 電荷傳導阻抗 - 38 - 4.3.3 個別元素存在之影響 - 40 - 4.4 穩定性探討 - 42 - 4.4.1 穩定性測定 - 42 - 4.4.2 表面構型變化 - 43 - 4.4.3 結晶型態變化 - 44 - 4.4.4 表面元素溶解於電解液 - 45 - 4.4.5 元素價態變化 - 47 - 4.4.6 氣體產物分析 - 49 - 4.5 材料最佳化之過程與探討 - 50 - 4.5.1 電沉積電位之選擇 - 51 - 4.5.2 電沉積時間之選擇 - 52 - 4.5.3 電沉積液中金屬比例之選擇 - 54 - 4.5.4 BVO/ZnCo-LDH與BVO/ZnCoV-LDH之綜合比較 - 57 - 4.6 助產氧催化劑BVO/ZnCoV-LDH之總體反應機構 - 63 - 第五章、 結論 - 67 - 第六章、 參考資料 - 69 - 第七章、 附錄 - 80 -

    [1] P.Zhang, T.Wang, X.Chang, J.Gong, Effective Charge Carrier Utilization in Photocatalytic Conversions, Acc. Chem. Res. 49 (2016) 911–921.
    [2] A.Banerjee, B.Mondal, A.Verma, V.R.Satsangi, R.Shrivastav, A.Dey, S.Dass, Enhancing efficiency of Fe2O3 for robust and proficient solar water splitting using a highly dispersed bioinspired catalyst, J. Catal. 352 (2017) 83–92.
    [3] T.M.Gür, S.F.Bent, F.B.Prinz, Nanostructuring materials for solar-to-hydrogen conversion, J. Phys. Chem. C. 118 (2014) 21301–21315.
    [4] S.J.A.Moniz, S.A.Shevlin, D.J.Martin, Z.X.Guo, J.Tang, Visible-light driven heterojunction photocatalysts for water splitting-a critical review, Energy Environ. Sci. 8 (2015) 731–759.
    [5] A.Fujishima, K.Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38.
    [6] J.Q.Li, Z.Y.Guo, D.F.Wang, H.Lui, J.Du, Z.F.Zhu, Effects of pH value on the surface morphology of BiVO4 microspheres and removal of methylene blue under visible light, J. Exp. Nanosci. 9 (2014) 616–624.
    [7] J.H.Kim, J.S.Lee, BiVO4-Based Heterostructured Photocatalysts for Solar Water Splitting: A Review, Energy Environ. Focus. 3 (2014) 339–353.
    [8] S.Xiao, H.Chen, Z.Yang, X.Long, Z.Wang, Z.Zhu, Y.Qu, S.Yang, Origin of the Different Photoelectrochemical Performance of Mesoporous BiVO4 Photoanodes between the BiVO4 and the FTO Side Illumination, J. Phys. Chem. C. 119 (2015) 23350–23357.
    [9] A.G.Tamirat, J.Rick, A.A.Dubale, W.N.Su, B.J.Hwang, Using hematite for photoelectrochemical water splitting: A review of current progress and challenges, Nanoscale Horizons. 1 (2016) 243–267.
    [10] Y.Liang, T.Tsubota, L.P.A.Mooij, R.Van DeKrol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C. 115 (2011) 17594–17598.
    [11] L.Xu, Y.Wei, W.Guo, Y.Guo, Y.Guo, One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene co-doped BiVO4 ternary systems, Appl. Surf. Sci. 332 (2015) 682–693.
    [12] G.Li, Y.Bai, W.F.Zhang, Difference in valence band top of BiVO4 with different crystal structure, Mater. Chem. Phys. 136 (2012) 930–934.
    [13] C.Martinez Suarez, S.Hernández, N.Russo, BiVO4 as photocatalyst for solar fuels production through water splitting: A short review, Appl. Catal. A Gen. 504 (2015) 158–170.
    [14] S.Kohtani, M.Koshiko, A.Kudo, K.Tokumura, Y.Ishigaki, A.Toriba, K.Hayakawa, R.Nakagaki, Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator, Appl. Catal. B Environ. 46 (2003) 573–586.
    [15] Z.Zhao, Z.Li, Z.Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys. 13 (2011) 4746–4753.
    [16] Z.F.Huang, L.Pan, J.J.Zou, X.Zhang, L.Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: A review on recent progress, Nanoscale. 6 (2014) 14044–14063.
    [17] K.R.Tolod, S.Hernández, N.Russo, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: Top-performing photoanodes and scale-up challenges, Catalysts. 7 (2017).
    [18] H.She, P.Yue, X.Ma, J.Huang, L.Wang, Q.Wang, Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation, Appl. Catal. B Environ. 263 (2020) 118280.
    [19] B.E.Wu, C.Y.Chiang, Photochemical metal organic deposition of FeOx catalyst on BiVO4 for improving solar-driven water oxidation efficiency, J. Taiwan Inst. Chem. Eng. 80 (2017) 1014–1021.
    [20] D.Ressnig, R.Kontic, G.R.Patzke, Morphology control of BiVO4 photocatalysts: PH optimization vs. self-organization, Mater. Chem. Phys. 135 (2012) 457–466.
    [21] D.Li, Y.Liu, W.Shi, C.Shao, S.Wang, C.Ding, T.Liu, F.Fan, J.Shi, C.Li, Crystallographic-orientation-dependent charge separation of BiVO4 for solar water oxidation, ACS Energy Lett. 4 (2019) 825–831.
    [22] K.J.McDonald, K.S.Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, Energy Environ. Sci. 5 (2012) 8553–8557.
    [23] J.S.Yang, J.J.Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting, Nano Energy. 32 (2017) 232–240.
    [24] S.J.Hong, S.Lee, J.S.Jang, J.S.Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci. 4 (2011) 1781–1787.
    [25] J.H.Baek, B.J.Kim, G.S.Han, S.W.Hwang, D.R.Kim, I.S.Cho, H.S.Jung, BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell, ACS Appl. Mater. Interfaces. 9 (2017) 1479–1487.
    [26] F.F.Abdi, N.Firet, R.VandeKrol, Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping, ChemCatChem. 5 (2013) 490–496.
    [27] W.Luo, Z.Li, T.Yu, Z.Zou, Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4, J. Phys. Chem. C. 116 (2012) 5076–5081.
    [28] S.P.Berglund, A.J.E.Rettie, S.Hoang, C.B.Mullins, Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation, Phys. Chem. Chem. Phys. 14 (2012) 7065–7075.
    [29] C.Ding, J.Shi, D.Wang, Z.Wang, N.Wang, G.Liu, F.Xiong, C.Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys. 15 (2013) 4589–4595.
    [30] S.K.Choi, W.Choi, H.Park, Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes, Phys. Chem. Chem. Phys. 15 (2013) 6499–6507.
    [31] Y.Ma, A.Kafizas, S.R.Pendlebury, F.LeFormal, J.R.Durrant, Photoinduced Absorption Spectroscopy of CoPi on BiVO4: The Function of CoPi during Water Oxidation, Adv. Funct. Mater. 26 (2016) 4951–4960.
    [32] T.G.Vo, H.M.Liu, C.Y.Chiang, Highly conformal deposition of ultrathin cobalt acetate on a bismuth vanadate nanostructure for solar water splitting, Catal. Sci. Technol. 9 (2019) 4588–4597.
    [33] H.Luo, C.Liu, Y.Xu, C.Zhang, W.Wang, Z.Chen, An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation, Int. J. Hydrogen Energy. 44 (2019) 30160–30170.
    [34] B.Zhang, L.Wang, Y.Zhang, Y.Ding, Y.Bi, Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation, Angew. Chemie - Int. Ed. 57 (2018) 2248–2252.
    [35] L.Qian, P.Liu, L.Zhang, C.Wang, S.Yang, L.Zheng, A.Chen, H.Yang, Amorphous ferric oxide as a hole-extraction and transfer layer on nanoporous bismuth vanadate photoanode for water oxidation, Cuihua Xuebao/Chinese J. Catal. 38 (2017) 1045–1051.
    [36] T.G.Vo, Y.Tai, C.Y.Chiang, Unraveling the critical effects of the preoxidation process toward the morphological evolution and intrinsic properties of novel ZnCoMn trimetallic hydroxides, Dalt. Trans. 47 (2018) 12061–12065.
    [37] Z.Cai, X.Bu, P.Wang, J.C.Ho, J.Yang, X.Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A. 7 (2019) 5069–5089.
    [38] 層狀複金屬氧化物(LDHs)作為陰離子捕獲劑之應用, (n.d.) 1–21.
    [39] S.P.Newman, W.Jones, Synthesis, characterization and applications of layered double hydroxides containing organic guests, New J. Chem. 22 (1998) 105–115.
    [40] K.H.Goh, T.T.Lim, Z.Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Res. 42 (2008) 1343–1368.
    [41] C.Forano, U.Costantino, V.Prévot, C.T.Gueho, Layered double hydroxides (LDH), Dev. Clay Sci. 5 (2013) 745–782.
    [42] M.Ogawa, S.Asai, Hydrothermal Synthesis of Layered Double, Chem. Mater. 12 (2000) 3253–3255.
    [43] A.C.Cardiel, K.J.McDonald, K.S.Choi, Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes, Langmuir. 33 (2017) 9262–9270.
    [44] D.Friebel, M.W.Louie, M.Bajdich, K.E.Sanwald, Y.Cai, A.M.Wise, M.J.Cheng, D.Sokaras, T.C.Weng, R.Alonso-Mori, R.C.Davis, J.R.Bargar, J.K.Nørskov, A.Nilsson, A.T.Bell, Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting, J. Am. Chem. Soc. 137 (2015) 1305–1313.
    [45] L.Qian, Z.Lu, T.Xu, X.Wu, Y.Tian, Y.Li, Z.Huo, X.Sun, X.Duan, Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis, Adv. Energy Mater. 5 (2015).
    [46] B.J.Trzes̈niewski, O.Diaz-Morales, D.A.Vermaas, A.Longo, W.Bras, M.T.M.Koper, W.A.Smith, In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity, J. Am. Chem. Soc. 137 (2015) 15112–15121.
    [47] W.He, R.Wang, L.Zhang, J.Zhu, X.Xiang, F.Li, Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls, J. Mater. Chem. A. 3 (2015) 17977–17982.
    [48] P.Li, X.Duan, Y.Kuang, Y.Li, G.Zhang, W.Liu, X.Sun, Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation, Adv. Energy Mater. 8 (2018) 1–8.
    [49] R.A.Sayed, S.E.Abd El Hafiz, N.Gamal, Y.GadelHak, W.M.A.ElRouby, Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting, J. Alloys Compd. 728 (2017) 1171–1179.
    [50] W.He, R.Wang, L.Zhang, J.Zhu, X.Xiang, F.Li, Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls, J. Mater. Chem. A. 3 (2015) 17977–17982.
    [51] D.Xu, Y.Rui, Y.Li, Q.Zhang, H.Wang, Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci. 358 (2015) 436–442.
    [52] K.Fan, H.Chen, Y.Ji, H.Huang, P.M.Claesson, Q.Daniel, B.Philippe, H.Rensmo, F.Li, Y.Luo, L.Sun, Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7 (2016) 1–9.
    [53] G.Wang, B.Wang, C.Su, D.Li, L.Zhang, R.Chong, Z.Chang, Enhancing and stabilizing Α-Fe2O3 photoanode towards neutral water oxidation: Introducing a dual-functional NiCoAl layered double hydroxide overlayer, J. Catal. 359 (2018) 287–295.
    [54] Q.Yang, T.Li, Z.Lu, X.Sun, J.Liu, Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction, Nanoscale. 6 (2014) 11789–11794.
    [55] J.Bao, Z.Wang, J.Xie, L.Xu, F.Lei, M.Guan, Y.Zhao, Y.Huang, H.Li, A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting, Chem. Commun. 55 (2019) 3521–3524.
    [56] Z.Lu, L.Qian, Y.Tian, Y.Li, X.Sun, X.Duan, Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts, Chem. Commun. 52 (2016) 908–911.
    [57] X.Wang, Y.Yang, L.Diao, Y.Tang, F.He, E.Liu, C.He, C.Shi, J.Li, J.Sha, S.Ji, P.Zhang, L.Ma, N.Zhao, CeOx -Decorated NiFe-Layered Double Hydroxide for Efficient Alkaline Hydrogen Evolution by Oxygen Vacancy Engineering, ACS Appl. Mater. Interfaces. 10 (2018) 35145–35153.
    [58] H.Liu, Y.Wang, X.Lu, Y.Hu, G.Zhu, R.Chen, L.Ma, H.Zhu, Z.Tie, J.Liu, Z.Jin, The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution, Nano Energy. 35 (2017) 350–357.
    [59] H.L.Tan, X.Wen, R.Amal, Y.H.Ng, BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity, J. Phys. Chem. Lett. 7 (2016) 1400–1405.
    [60] S.Dong, J.Feng, Y.Li, L.Hu, M.Liu, Y.Wang, Y.Pi, J.Sun, J.Sun, Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity, Appl. Catal. B Environ. 152–153 (2014) 413–424.
    [61] D.K.Ma, M.L.Guan, S.SenLiu, Y.Q.Zhang, C.W.Zhang, Y.X.He, S.M.Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity, Dalt. Trans. 41 (2012) 5581–5586.
    [62] A.Hankin, F.E.Bedoya-Lora, J.C.Alexander, A.Regoutz, G.H.Kelsall, Flat band potential determination: Avoiding the pitfalls, J. Mater. Chem. A. 7 (2019) 26162–26176.
    [63] D.Kim, Z.Zhang, K.Yong, Synergistic doping effects of a ZnO:N/BiVO4:Mo bunched nanorod array photoanode for enhancing charge transfer and carrier density in photoelectrochemical systems, Nanoscale. 10 (2018) 20256–20265.
    [64] D.A.Reddy, Y.Kim, H.S.Shim, K.A.J.Reddy, M.Gopannagari, D.Praveen Kumar, J.K.Song, T.K.Kim, Significant Improvements on BiVO4@CoPi Photoanode Solar Water Splitting Performance by Extending Visible-Light Harvesting Capacity and Charge Carrier Transportation, ACS Appl. Energy Mater. 3 (2020) 4474–4483.
    [65] R.Saito, Y.Miseki, K.Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte, Chem. Commun. 48 (2012) 3833–3835.
    [66] 黃律維, 以甘油作為BiVO4光電極水分解反應之犧牲試劑並同時進行甘油氧化之研究, 2018, (n.d.).
    [67] H.R.Khan, M.Aamir, B.Akram, A.A.Tahir, M.A.Malik, M.A.Choudhary, J.Akhtar, Superior visible-light assisted water splitting performance by Fe incorporated ZnO photoanodes, Mater. Res. Bull. 122 (2020) 110627.
    [68] H.R.Khan, B.Akram, M.Aamir, M.A.Malik, A.A.Tahir, M.A.Choudhary, J.Akhtar, Fabrication of Ni2+ incorporated ZnO photoanode for efficient overall water splitting, Appl. Surf. Sci. 490 (2019) 302–308.
    [69] S.Shet, Zinc Oxide (ZnO) Nanostructures for Photoelectrochemical Water Splitting Application, (2011) 15–25.
    [70] M.F.Lichterman, M.R.Shaner, S.G.Handler, B.S.Brunschwig, H.B.Gray, N.S.Lewis, J.M.Spurgeon, Enhanced stability and activity for water oxidation in alkaline media with Bismuth Vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition, J. Phys. Chem. Lett. 4 (2013) 4188–4191.
    [71] M.Zhong, T.Hisatomi, Y.Kuang, J.Zhao, M.Liu, A.Iwase, Q.Jia, H.Nishiyama, T.Minegishi, M.Nakabayashi, N.Shibata, R.Niishiro, C.Katayama, H.Shibano, M.Katayama, A.Kudo, T.Yamada, K.Domen, Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation, J. Am. Chem. Soc. 137 (2015) 5053–5060.
    [72] Q.Liu, J.Huang, Y.Zhao, L.Cao, K.Li, N.Zhang, D.Yang, L.Feng, L.Feng, Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting, Nanoscale. 11 (2019) 8855–8863.
    [73] D.Lee, A.Kvit, K.S.Choi, Enabling Solar Water Oxidation by BiVO4 Photoanodes in Basic Media, Chem. Mater. 30 (2018) 4704–4712.
    [74] Y.Hu, Z.Wang, W.Liu, L.Xu, M.Guan, Y.Huang, Y.Zhao, J.Bao, H.M.Li, Novel Cobalt-Iron-Vanadium Layered Double Hydroxide Nanosheet Arrays for Superior Water Oxidation Performance, ACS Sustain. Chem. Eng. 7 (2019) 16828–16834.
    [75] K.N.Dinh, P.Zheng, Z.Dai, Y.Zhang, R.Dangol, Y.Zheng, B.Li, Y.Zong, Q.Yan, Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting, Small. 14 (2018) 1–9.
    [76] P.Li, M.Wang, X.Duan, L.Zheng, X.Cheng, Y.Zhang, Y.Kuang, Y.Li, Q.Ma, Z.Feng, W.Liu, X.Sun, Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides, Nat. Commun. 10 (2019) 1–11.
    [77] Q.Wang, T.Niu, L.Wang, J.Huang, H.She, NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting, Cuihua Xuebao/Chinese J. Catal. 39 (2018) 613–618.
    [78] W.Liu, H.Liu, L.Dang, H.Zhang, X.Wu, B.Yang, Z.Li, X.Zhang, L.Lei, S.Jin, Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo-Electrochemical Oxygen Evolution, Adv. Funct. Mater. 27 (2017).
    [79] T.Zhang, Y.Lu, J.Wang, Z.Wang, W.Zhang, X.Wang, J.Su, L.Guo, Growth of NiMn layered double hydroxides on nanopyramidal BiVO4 photoanode for enhanced photoelectrochemical performance, Nanotechnology. 31 (2020) 115707.

    無法下載圖示 全文公開日期 2025/08/12 (校內網路)
    全文公開日期 2025/08/12 (校外網路)
    全文公開日期 2025/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE