簡易檢索 / 詳目顯示

研究生: 李昀泰
Yun-Tai Lee
論文名稱: 尾礦渣應用於活性粉混凝土性質之研究
The Study of Reactive Powder Concrete property by Using Tailing
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 王和源
Her-Yung Wang
廖敏志
Min-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 尾礦渣活性粉混凝土富勒曲線卜作嵐材料
外文關鍵詞: Tailing, Reactive Powder Contrete, Fuller’s curve, Pozzolanic Material
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以尾礦渣製作活性粉混凝土,並參考「黃氏富勒緻密配比設計法」,固定以90%尾礦渣與10%飛灰做為粒料,並以為粒料佔總體積含量(40%、50%、60%)來探討其工程性質之影響、以爐石取代水泥量(0%、10%、30%、50%)、改變水膠比(0.12、0.16、0.2)、添加矽灰(0%、5%、10%、15%)、養護溫度及壓力(常溫常壓、高溫高壓200°C,8小時)藉以了解影響尾礦渣活性粉混凝土的因素。試驗內容包括工程性質(抗壓強度、超音波波速、熱傳導係數、吸水率),耐久性質(硫酸鹽侵蝕)之量測,以及運用顯微照片與X光繞射分析儀來觀察其在不同養護情況下的水化物。結果顯示,在工程性質方面,隨著粒料含量越低,其性質越佳;爐石以10%為宜;水膠比越低,漿質越佳,表現也較佳;矽灰以添加5%為宜,可以減少強塑劑的用量;高溫高壓養護可以在早期時立即提升抗壓強度許多,但隨著齡期的增長,其抗壓提升的幅度並不大。耐久性質方面,大致與工程性質相同,不過使用較多粒料者較易受硫酸鹽的侵蝕影響。從電子顯微鏡SEM的照片與EDS分析可以看出,尾礦渣並不會和其他物質反應以及在高溫高壓養護下特別的水化產物。


    The main purpose of this study is to explore the potential of using tailing as aggregate material to produce reactive powder concrete by using Hwang-Fuller’s Densified Mixture Design Algorithm (DMDA).Fix the amount of tailing and fly ash as aggregate. Then varied the amount of aggregate by 40%, 50%, and 60% of the total volume. Slag was used to replace cement from 10 % to 50% by volume with increment of 20% while silica fume was used as additional cementing material comprising 5%, 10% and 15% of the total solid volume. The reactive powder concrete mixtures were prepared different w/b of 0.12, 0.16, and 0.2. The samples were cured in ambient temperature curing condition (25°C) up to 28 d and autoclave curing with temperature 200°C temperature for 8 h. The harden properties of reactive powder concrete (compressive strength, ultrasonic pulse velocity, thermal conductivity) and durability properties (water absorption, sulfate attack) were studied. In addition, the microstructure properties were investigated by using SEM and XRD analysis to study the performance of samples in different curing conditions. The results revealed that the mechanical performance samples increased with the decreasing in volume of aggregate.
    The optimum amounts of slag and silica fume were found to be 10% of cement 5% solid volume respectively. Increasing amount of silica fume beyond optimum content need more superplasticizer to maintain the workability. Autoclave curing can increase compressive strength in early stage, but with the increase of age, its compressive strength dose not improved. The durability results of reactive powder concrete exposed almost similar trend with the mechanical properties, but the one with more aggregates are more susceptible to sulfate attack. From the SEM and EDS analysis, it can be seen that tailing does not react with other materials and different hydration products under high temperature and high pressure curing.

    目錄 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 1 1-3 研究方法 1 1-4 研究流程 2 第二章 文獻回顧 3 2-1 尾礦渣簡介 3 2-1-1 尾礦渣混凝土之新拌性質 3 2-1-2 尾礦渣混凝土之力學性質 3 2-1-3 尾礦渣混凝土之耐久性質 4 2-1-4 尾礦渣混凝土之微觀結構 5 2-2 活性粉混凝土簡介 5 2-2-1 活性粉混凝土之新拌性質 7 2-2-2 活性粉混凝土之工程性質 7 2-2-3 活性粉混凝土之耐久性質 8 2-2-4 活性粉混凝土之微觀結構 9 2-2-5 高溫高壓蒸氣器對活性粉混凝土之影響 9 2-3 飛灰、爐石等卜作嵐材料 10 2-4 FULLER’S CURVE緻密堆積理論 12 第三章 試驗計畫 19 3-1 試驗規劃與變數 19 3-2 試驗材料及基本物化性質 19 3-2-1 尾礦渣 19 3-2-2 飛灰 19 3-2-3 水泥 20 3-2-4 爐石粉 20 3-2-5 矽灰 20 3-2-6 強塑劑 20 3-2-7 拌合水 20 3-3 配比設計 21 3-3-1 粒料堆積之比例 21 3-3-2 活性粉混凝土用漿量 21 3-4 工程性質試驗 21 3-5-1 試體製作 21 3-5-2 抗壓強度試驗 22 3-5-3 超音波速量測 22 3-5-4 熱傳導係數量測 22 3-5-5 吸水率試驗 23 3-5 耐久性質試驗 24 3-5-1 硫酸鹽侵蝕試驗 24 3-6 微觀結構 25 3-6-1 顯微觀測 25 3-6-2 X光繞射分析儀分析 25 第四章 結果與討論 45 4-1 尾礦渣活性粉混凝土之工程性質 45 4-2-1 抗壓強度 45 4-2-2 超音波波速 48 4-2-3 熱傳導係數 50 4-2-4 吸水率 51 4-2 尾礦渣活性粉混凝土之耐久性質 53 4-3-1 硫酸鹽侵蝕 53 4-3 尾礦渣活性粉混凝土之微觀結構 54 4-4-1 顯微觀測 54 4-4-2 X光繞射分析儀 55 第五章 結論與建議 80 5-1 結論 80 5-2 建議 80 參考文獻 82

    1. Tian, Z.-x., et al., Experimental Study on the Properties of Concrete Mixed with Iron Ore Tailings. Advances in Materials Science and Engineering, 2016. 2016: p. 1-9.
    2. 黃兆龍, 混凝土性質與行為. 詹氏書局, 2003.
    3. Hansen, H.K., J.B. Yianatos, and L.M. Ottosen, Speciation and leachability of copper in mine tailings from porphyry copper mining: Influence of particle size. Chemosphere, 2005. 60(10): p. 1497-1503.
    4. Onuaguluchi, O. and Ö. Eren, Recycling of copper tailings as an additive in cement mortars. Construction and Building Materials, 2012. 37: p. 723-727.
    5. Thomas, B.S., A. Damare, and R.C. Gupta, Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 2013. 48: p. 894-900.
    6. Pyo, S., et al., Effects of quartz-based mine tailings on characteristics and leaching behavior of ultra-high performance concrete. Construction and Building Materials, 2018. 166: p. 110-117.
    7. Espinoza-Hijazin, G. and M. Lopez, Extending internal curing to concrete mixtures with W/C higher than 0.42. Construction and Building Materials, 2011. 25(3): p. 1236-1242.
    8. Zhao, S., J. Fan, and W. Sun, Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Construction and Building Materials, 2014. 50: p. 540-548.
    9. Lee, J.K., J.Q. Shang, and S. Jeong, Thermo-mechanical properties and microfabric of fly ash-stabilized gold tailings. Journal of Hazardous Materials, 2014. 276: p. 323-331.
    10. Richard, P. and M.H. Cheyrezy, Reactive Powder Concretes With High Ductility and 200 - 800 Mpa Compressive Strength. ACI Symposium Publication. 144.
    11. Richard, P. and M. Cheyrezy, Composition of reactive powder concretes. Cement and Concrete Research, 1995. 25(7): p. 1501-1511.
    12. 何曜宇, 活性粉混凝土破壞行為之研究. 碩士論文,國立台灣大學土木研究所, 2000.(陳振川教授指導)
    13. 吳建興, 活性粉混凝土補強混凝土構件與耐久性能之測試研究. 碩士論文,朝陽科技大學, 2003.(李明君教授指導)
    14. 林坤德, 鋼纖維與矽砂含量對活性粉混凝土熱學與力學性質之影響. 碩士論文,國立台灣科技大學, 2005.(張大鵬教授指導)
    15. Yiğiter, H., et al., Mechanical performance of low cement reactive powder concrete (LCRPC). Composites Part B: Engineering, 2012. 43(8): p. 2907-2914.
    16. Peng, Y., et al., Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Construction and Building Materials, 2015. 101: p. 482-487.
    17. Yazıcı, H., et al., Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement and Concrete Composites, 2010. 32(8): p. 639-648.
    18. Roux, N., C. Andrade, and M.A. Sanjuan, Experimental Study of Durability of Reactive Powder Concretes. 1996. 8(1): p. 1-6.
    19. Tam, C.M., V.W.Y. Tam, and K.M. Ng, Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Construction and Building Materials, 2012. 26(1): p. 79-89.
    20. Cheyrezy, M., V. Maret, and L. Frouin, Microstructural analysis of RPC (Reactive Powder Concrete). Cement and Concrete Research, 1995. 25(7): p. 1491-1500.
    21. Yazıcı, H., E. Deniz, and B. Baradan, The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Construction and Building Materials, 2013. 42: p. 53-63.
    22. Korpa, A., T. Kowald, and R. Trettin, Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods. Cement and Concrete Research, 2009. 39(2): p. 69-76.
    23. Garas, V.Y., K.E. Kurtis, and L.F. Kahn, Creep of UHPC in tension and compression: Effect of thermal treatment. Cement and Concrete Composites, 2012. 34(4): p. 493-502.
    24. Beaudoin, J. and I. Odler, 5 - Hydration, Setting and Hardening of Portland Cement, in Lea's Chemistry of Cement and Concrete (Fifth Edition), P.C. Hewlett and M. Liska, Editors. 2019, Butterworth-Heinemann. p. 157-250.
    25. Zdeb, T., An analysis of the steam curing and autoclaving process parameters for reactive powder concretes. Construction and Building Materials, 2017. 131: p. 758-766.
    26. Chen, T., X. Gao, and M. Ren, Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete. Construction and Building Materials, 2018. 158: p. 864-872.
    27. Hassan, K.E., J.G. Cabrera, and R.S. Maliehe, The effect of mineral admixtures on the properties of high-performance concrete. Cement and Concrete Composites, 2000. 22(4): p. 267-271.
    28. Polder, R.B. and W.H.A. Peelen, Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cement and Concrete Composites, 2002. 24(5): p. 427-435.
    29. Song, H.-W. and V. Saraswathy, Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview. Journal of Hazardous Materials, 2006. 138(2): p. 226-233.
    30. Detwiler, R.J., USE OF SUPPLEMENTARY CEMENTING MATERIALS TO INCREASE THE RESISTANCE TO CHLORIDE ION PENETRATION OF CONCRETES CURED AT ELEVATED TEMPERATURES. ACI Materials Journal, 1994. 91(1).
    31. Yazıcı, H., The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and Environment, 2007. 42(5): p. 2083-2089.
    32. 謝素蘭, 應用Fuller級配曲線探討水泥基質材料之巨微觀性質. 博士論文,國立台灣科技大學, 2008.(黃兆龍教授指導)
    33. 李金輝, 黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究. 碩士論文, 2006. (黃兆龍教授指導)
    34. Famy, C., A.R. Brough, and H.F.W. Taylor, The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions. Cement and Concrete Research, 2003. 33(9): p. 1389-1398.
    35. Kapeluszna, E., et al., Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Construction and Building Materials, 2017. 155: p. 643-653.

    無法下載圖示 全文公開日期 2025/01/14 (校內網路)
    全文公開日期 2025/01/14 (校外網路)
    全文公開日期 2025/01/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE