簡易檢索 / 詳目顯示

研究生: 黃瀚民
Han-Min Huang
論文名稱: 五軸加工機上擺線齒輪之掃描式線上量測
ON-MACHINE SCANNING MEASUREMENT OF CYCLOIDAL GEARS ON THE FIVE-AXIS CNC MACHINE
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 吳育仁
Yu-Ren Wu
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 掃描式探針量測系統擺線齒輪精度評估海德漢ITNC 530五軸工具機
外文關鍵詞: Scanning probe measurement systems, cycloidal gear, accuracy evaluation, Heidenhain iTNC530 controller, five-axis CNC machine
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前市面上有許多廣為人知及受人信賴的齒輪量測專用機與三次元量床廠家,為因應機器手臂大量使用擺線齒輪減速機的需求,量測廠商開始著手擺線齒輪量測軟體開發。本論文主要致力於開發一套擺線齒輪掃描式量測系統,以現有五軸工具機作為實驗機台,並以Visual C#程式開發量測人機介面,整合海德漢(Hedienhan)控制器和掃描式感測器,來檢測擺線齒輪精度。
    擺線齒輪精度評估項目包含節距和齒形誤差,由於擺線齒輪尚未成一套自有的量測精度評估標準,因此參考齒形較為相似的圓柱齒輪之精度評估標準DIN 3960 [8]做為擺線齒輪之誤差評估標準。其DIN標準量測項目包含齒形誤差、齒厚誤差、單齒節距誤差、鄰接節距誤差、累積節距誤差以及徑向跳動誤差等六項,依據DIN 3962 [9]建立精度評估等級資料庫,藉此來評估擺線齒輪誤差精度等級。線上量測系統建構於百德(QUASER)UX 300五軸工具機上,本論文首先建立擺線齒輪量測路徑數學模式,利用開發之量測軟體整合海德漢ITNC 530控制器進行機台量測監控,搭配波龍(Blum) TC-76三維掃描式探針於自行規劃之路徑進行量測,量測數據透過擷取盒轉換回傳至電腦內,並即時進行齒輪量測與精度評估。後續並將量測之精度結果與克林根貝格(Klingelnberg) P40齒輪量測機之量測結果進行誤差比對,以驗證本研究之數學模式與量測精確性。


    Robotic arms are widely applied in manufacturing industries of automation, and cycloidal gear reducer is its key part. To meet the demand of measuring cycloidal gears, many well-known and trusted gear measuring machines and coordinate measuring machines have begun to develop measuring system for cycloidal gears. This paper aims to develop a scanning measurement system for cycloidal gears. A five-axis tool machine is here adopted as an experimental machine, the Visual C# is applied to develop the human-machine interface, and an integration of HEIDENHAIN CNC controller and a scanning sensor is developed to measure cycloidal gears.
    Accuracy evaluations of cycloidal gear include pitch and tooth profile errors. However, up to now, an accuracy standard of cycloidal gears has not even seen. Measuring items of cycloidal gear refer standard DIN 3961 which gives the definition of tolerances for cylindrical gear teeth. In the DIN standard, there are six measuring items: profile error, tooth thickness error, single pitch error, adjacent pitch error, accumulative pitch error, and runout error. Accuracy grade of cycloidal gear is evaluated according to DIN 3962 which gives tolerances for cylindrical gear teeth. The online measurement system is built on the Quaser UX 300 five-axis machine tool. Here, the NC position for measuring the cycloidal gear is first derived. The developed measurement program integrates HEIDENHAIN ITNC 530 controller and BLUM TC-76 scanning probe. As a result, measuring process and position can be real-time monitored. The movement of scanning probe is under the commands of planned NC codes. The measurement data is converted through the data acquisition (DAQ) device and transmitted to the PC, and the gear measurement and accuracy evaluation are performed in real-time. Subsequently, the accuracy of the measurement is compared with the measurement result of the Klingenberg P40 gear measuring machine to verify the mathematical model and measurement accuracy.

    指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 致 謝 V 目 錄 VI 符號定義 IX 圖索引 XI 表索引 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文架構 3 第2章 擺線齒輪之齒形數學模式及精度評估 5 2.1 前言 5 2.2 理論齒形點數學模式 5 2.3 節距誤差 7 2.3.1 單齒節距誤差 7 2.3.2 鄰接節距誤差 8 2.3.3 累積節距誤差 8 2.3.4 徑向跳動誤差 9 2.4 齒厚誤差 10 2.5 齒形誤差 10 2.6 誤差等級評估 12 2.7 小結 12 第3章 五軸工具機之擺線齒輪齒形掃描量測路徑之數學模式推導 13 3.1 前言 13 3.2 五軸工具機座標系統 13 3.3 擺線齒輪齒形量測路徑 14 3.3.1 齒形點之四軸量測座標推導 15 3.3.2 齒形量測路徑規劃 17 3.4 機械誤差校正 18 3.4.1 工件中心偏移校正 18 3.4.2 感測器位置偏差輸出電壓值校正 18 3.4.3 掃描式探針誤差校正 20 3.5 數值範例 21 3.6 小結 24 第4章 海德漢iTNC530控制器線上量測系統架構 26 4.1 前言 26 4.2 五軸工具機線上量測系統架構 26 4.3 海德漢ITNC530控制器 27 4.3.1 控制器連線 27 4.3.2 Visual C#調用海德漢函式庫 27 4.4 波龍TC-76感測器 30 4.4.1 感測器系統硬體架構 31 4.4.2 Visual C#調用NI擷取硬體函式庫 32 4.5 擺線齒輪量測人機介面 34 4.5.1 理論擺線齒輪設計之人機介面 34 4.5.2 量測項目列表 35 4.5.3 控制器連線設定 36 4.5.4 量測模擬監控系統 36 4.5.5 線上量測系統 37 4.6 小結 38 第5章 擺線齒輪量測實驗結果與討論 39 5.1 前言 39 5.2 節距誤差評估結果 39 5.3 徑向跳動誤差評估結果 41 5.4 齒厚評估結果 42 5.5 齒形誤差評估結果 42 5.6 小結 45 第6章 結論與建議 46 6.1 結果與討論 46 6.2 建議與未來展望 47 參考文獻 48 附錄A. P40擺線齒輪量測資料 50

    [1]D.W. Botsiber, and L. Kingston, 1956, “Cycloid Speed Reducer”, Machine Design, pp.65-69.
    [2]E.P. Pollitt,1960, “Some Applications of the Cycloid in Machine Design,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol.82, No.4, pp.407-414.
    [3]J. G. Blanche, and D. C. H. Yang., 1989, “Design and Application Guidelines for Cycloid Drives with Machining Tolerances,” Measurement Science and Technology, Vol.25, No.5, pp.487-501.
    [4]F. L. Litvin, and P. H. Feng., 1996, “Computerized Design and Generation of Cycloidal Gearings,” Measurement Science and Technology, Vol.31, No.7, pp.891-911.
    [5]Z.H. Fong, and C.W. Tsay, 2000, “Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference,” Journal of the Chinese Society of Mechanical Engineers, Vol.21, No.4, pp.359-367.
    [6]J. H. Shin, and S. M. Kwon, 2006, “On the Lobe Profile Design in a Cycloid Reducer Using Instant Velocity Center,” Measurement Science and Technology, Vol.41, No.5, pp.596-616.
    [7]Y. W. Hwang, and C.F. Hsieh, 2007, “Determination of Surface Singularities of a Cycloidal Gear Drive with Inner Meshing,” Mathematical and Computer Modelling, Vol.45, pp.340-354.
    [8]DIN 3961, 1980, “Tolerances for Cylindrical Gear Teeth-Bases,” Germany.
    [9]DIN 3962, 1978, “Tolerances for Cylindrical Gear Teeth-Tolerances for Deviations of Individual Parameters,” Germany.
    [10]T. Li, J. Zhou, X. Deng, J. Li, C. Xing, J. Su, and H. Wang, 2018, “A Manufacturing Error Measurement Methodology for a Rotary Vector Reducer Cycloidal Gear Based on a Gear Measuring Center,” Measurement Science and Technology, Vol.29, No.7, p.075006.
    [11]A. Bastas, 2020, “Comparing the Probing Systems of Coordinate Measurement Machine: Scanning Probe Versus Touch-Trigger Probe,” Middle East Technical University – Northern Cyprus Campus, Guzelyurt via Mersin 10, Turkey.
    [12]游鈞皓,2014,五軸工具機之線上傘齒輪三維式掃描式量測,國立台灣科技大學碩士論文。
    [13]羅仕宏,2019,擺線齒輪精度評估,國立台灣科技大學碩士論文。
    [14]ISO 10360-4, 2000, “Geometrical Product Specifications (GPS) -- Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM) -- Part 4: CMMs Used in Scanning Measuring Mode.”
    [15]A. Rak, and A. Woźniak, 2009, “Probe Radius Correction Methods– Review and Comparison of Existing Methods,” Journal of Automation Mobile Robotic and Intelligent Systems, Vol.3, No.4, pp.169-171.
    [16]A. K ̈ung, F. Meli, and R. Thalmann, 2007, Ultra Precision Micro-CMM Using a Low Force 3D Touch Probe, Measurement Science and Technology, Vol.18, No.2, pp.319-327.
    [17]王邦宇,2011,五軸CNC成形砂輪磨齒機之人機介面研究,國立台灣科技大學碩士論文。
    [18]林士勛,2013,五軸工具機之傘齒輪線上掃描式量測,國立台灣科技大學碩士論文。
    [19]Y. Liu, 2013, “Application and Study of CNC Network System Based on DNC,” Advanced Materials Research, Vol.655-657, pp.1214-1217.
    [20]R. S. Lee,and C. M. Wu, 2015, “Virtual machine tool simulation through network communication with CNC controller,” 2015 IFToMM World Congress Proceedings, pp.428-432.
    [21]Heidenhain, 2010, Remo Tools SDK Tutorial-C# Anwendung Mit Microsoft Visual Studio 2010, Germany.
    [22]Heidenhain, 2008, iTNC530 User’s Manual Cycle Programming, Germany.
    [23] Klingelnberg, 2006, P40 Operating Instructions, Cylinder Gear Software, Version 03-000en.
    [24]Blum, 2011, TC-76 Operating Instructions, Germany.
    [25]National Instruments, 2009, NI USB-621x Specifications, USA.
    [26]百德, 2013, 五軸加工中心型錄, 台灣。

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE