簡易檢索 / 詳目顯示

研究生: 宋嘉緯
Jia-Wei Song
論文名稱: 不同治療策略於連枷胸骨折問題之生物力學研究
Biomechanical Investigation of Different Surgical Techniques for the Treatment of Flail Chest Injury
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
Ching-Chi Hsu
釋高上
Gao-Shang Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 鈦金屬骨板復位固定手術肋骨骨板Matrix-rib連枷胸有限元素分析生物力學分析
外文關鍵詞: Flail chest injury, Plate fixation
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肋骨骨折是在急診室常見的損傷,其中最常發生胸部鈍傷,可能誘發肋骨二處或以上的部位發生骨折,成為連枷胸骨折。現階段有許多連枷胸的治療方法,傳統方法是使用機械呼吸器以及止痛劑等藥物來減少病患的疼痛程度,但當肋骨骨折患者因斷裂肋骨的過大位移,導致引發劇烈疼痛、影響呼吸與胸壁變形,執行外科骨板固定手術就顯得極其重要。近年來隨著醫療科技的進步,「鈦金屬骨板復位固定手術」已被證實可降低患者呼吸疼痛感,並縮短住院時間與降低胸腔創傷之併發症發生率。然而在臨床醫生對於打骨板的位置以及需要打幾根骨板
    ,都是透過自身過往實踐的經驗判斷,直到現在並沒有使用科學的方法來預測對肋骨骨折施打骨板合適的位置。
    本研究使用有限元素分析的方法,針對連枷胸在不同的治療策略之結果來進行比較,透過電腦繪圖軟體在肋骨模型上設計骨板施打的位置,再藉由電腦模擬分析骨折處術後位移、術後肋骨呼吸時所產生的角度、骨折固定指標、骨板應力分布以及肋骨應力分布等等,做詳細的探討。在治療策略的參考組A與對照組B、 C、D之中,透過分析結果可發現擁有最少的骨折位移、最佳的固定指標,就是理想的治療策略,在基於此條件下,可發現當有單根肋骨前側(anterior)與後側(posterior)同時發生骨折時,可優先考慮前側施打骨板,也就是本研究G2骨板群,故在對照組當中,D為推薦的骨板施打治療策略。同時本研究也基於參考組與對照組的治療策略結果下,進而發展出特殊治療策略,其為E與F,施打骨板數量分別為6根與4根。利用特殊組治療策略將骨折後之懸浮端與固定端銜接,將連枷胸骨折簡化為一般肋骨骨折,大幅降低患術後骨折處位移,也就是減少患者呼吸疼痛機率增加,能幫助患者術後提早康復,同時還能降低施打的骨板數量,進而減少病患的手術費用負擔。
    雖然臨床案例研究是最直接能夠了解肋骨骨折問題的評估方式,需要大量的案例收集與長期的評估時間,但透過有限元素分析方法可大幅省下不少時間以及空間成本。希望藉由數值結果後處理的方式,依據肋骨骨折固定指數、肋骨骨骼應力與骨板植體應力進行評估來找出最佳植入物治療策略組合,以提供醫師在臨床上選擇植入物位置的參考。


    Rib fractures are common injuries in the emergency room, it may induce two or more parts of rib fractures to became a flail chest. Recently, with advances in medical technology, "Locked plate fixation" has been shown to reduce pain in patients with breathing, hospital stays, and incidence of complications of chest trauma. However, for the questions about how many fractures should be fixed with locked plates and how many numbers of the locked plate should be used in flail chest, which are determined through the experience of clinician. Until now, there is no study to predict suitable locations and numbers of locked plates for the treatment of flail chest by using finite element method.
    In this study, three-dimensional finite element models of flail chest injury were developed using Solidworks and ANSYS Workbench. Six kinds of treatment strategies for the injury were evaluated and discussed. A respiratory movement was simulated as the loading condition. Both the pump-handle angle and bucket-handle angle were calculated and compared to the previous studies. In post-processing, the fixation index, implant stress, and bone stress were calculated to evaluate the strengths and limitations of different fixation scenarios.
    The results showed that the anterior flail chest stabilization strategies revealed better mean fixation index than the posterior flail chest stabilization strategy. A fixation strategy with weak fixation index may increase the risk of implant failure. The use of different fixation strategies had a minor effect on the mean stress of the ribs. This finding revealed that the fixation index and implant stress have high priority in evaluation of various fixation strategies for flail chest injury. Numerical approach can greatly save time and cost compared to experimental approach. This study provides useful information for understanding the biomechanics of different fixation strategies for the treatment of flail chest injury.

    目錄 中文摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 1 表目錄 7 第一章 緒論 8 1.1 研究背景、動機與目的 8 1.2 人體肋骨與脊椎等部位解剖學介紹 10 1.2.1 脊椎 11 1.2.2 肋骨 15 1.2.3 鎖骨 17 1.2.4 肩胛骨 18 1.2.5 胸骨 19 1.2.6 骨盆 20 1.3 肋骨骨折原因及影響 21 1.3.1 連枷胸症狀影響 22 1.3.2 輕微症狀影響 23 1.3.3 嚴重症狀影響 24 1.4 肋骨骨折分類與治療方式 25 1.5 肋骨外科固定手術簡介 26 1.6 文獻回顧 27 1.7 本文架構 34 第二章 材料與方法 36 2.1 研究流程 36 2.2 有限元素法簡介 38 2.3 有限元素模型建構 41 2.3.1 完整肋骨骨骼模型 41 2.3.2 肋骨植入物模型 42 2.3.3 韌帶與肌肉系統建立 44 2.4 有限元素分析 46 2.4.1 連枷胸有限元素模型 46 2.4.2 材料性質設定 47 2.4.3 元素及網格設定 49 2.4.4 介面接觸設定 52 2.4.5 負載條件與邊界條件 52 2.4.6 數值模擬結果評估 56 2.5 胸腔肋骨模型之生物力學分析 58 2.5.1 泵浦把手角度 (Pump Handle Angle) 59 2.5.2 水桶提把角度 (Bucket Handle Angle) 61 2.6 連枷胸簡化為一般肋骨骨折 63 第三章 結果 65 3.1 收斂性分析 65 3.2 正常模型之有限元素分析驗證 68 3.3 正常模型有限元素分析結果 71 3.3.1 固定指標結果 73 3.3.2 植入物應力結果 82 3.3.3 肋骨骨骼應力結果 95 第四章 討論 107 4.1 有限元素分析模型討論 107 4.2 固定指標結果之討論 108 4.3 骨板應力結果之討論 109 4.4 肋骨骨骼應力結果之討論 110 4.5 研究限制 111 第五章 結論與未來展望 112 5.1 結論 112 5.2 未來展望 114 參考文獻 115

    Jeffrey Frank Jones, Army 68W10 Fieldcraft Student Handouts, 第二版 編者, 2012, pp. 3-16.
    Renata Bastos, John H. Calhoon, and Clinton E. Baisden., Flail Chest and Pulmonary Contusion, San Antonio, Texas., 2008, pp. 39-41.
    Yuan Zhang, Xue Tang, Hui Xie, Rui LanWang, Comparison of surgical fixation and nonsurgical management of flail, Shanghai, China, 2015, pp. 937-940.
    Andreas Granetznya, Mohamad Abd El-Aalb, ElRady Emamb, Alaa Shalabyc, Ahmad Boseilaa, Surgical versus conservative treatment of flail chest. Evaluation of the pulmonary status, Cairo, Egypt, 2005, pp. 583-587.
    Ting-Kuo Chang, Ching-Chi Hsu, Ming-An Yang, and Devina Sutaji, Effects of Fusion Device Designs on Spine Biomechanics, Taipei, Taiwan, 2019, pp. 84-89.
    Pei-I Tsai, Ching-Chi Hsu, San-Yuan Chen, Tsung-Han Wu, Chih-Chieh Huang, Biomechanical Investigation into the Structural Design of Porous Additive Manufactured Cages Using Numerical and Experimental Approaches, Taipei, Taiwan, September 2016, pp. 14-23.
    Schafman, Michelle Ann, Dynamic Structural Properties of Human Ribs in Frontal Loading, Ohio, Columbus, 2015, pp. 5-7.
    Aaron M Ranasinghe, Jonathan AJ Hyde and Timothy R Graham, Management of flail chest, Birmingham, UK, 2001, pp. 235-247.
    陳瑞貞、裘苕莙合譯,Sheehy.Danis.Blansfield.Gervasini合著, 連枷胸, Taipei, Taiwan.
    文章: Karin Kao,醫學審稿: Dr. Stephen Lai., 肋骨骨折, Taipei, Taiwan, 2019.
    Michael Bottlang, William B. Long, Daniel Phelan, Drew Fielder, Steven M. Madey, Surgical stabilization of flail chest injuries with MatrixRIB implants: A prospective, Austin, TX, United States, 2012, pp. 232-238.
    Anat Ratnovsky, David Elad, Anatomical model of the human trunk for analysis of respiratory muscles mechanics, Tel Aviv 69978, Israel, 2005, pp. 245-262.
    Marcus Mohr, Eduard Abrams, Christine Engel, William B. Long, Michael Bottlan, Geometry of human ribs pertinent to orthopedic chest-wall reconstruction, Portland, OR, USA, 2006, pp. 1310-1317.
    Jan Awrejcewicz, Bartosz Łuczak, THE FINITE ELEMENT MODEL OF THE HUMAN RIB CAGE, Lodz, Poland, 2005, pp. 30-31.
    Silvana Marasco, Jamie Cooper, Adrian Pick and Thomas Kossmann, Pilot study of operative fixation of fractured ribs in patients with flail chest, Victoria, Australia, 2008, pp. 804-808.
    Silvana F. Marasco, FRACS, Ilija D. Sutalo, and Anh V. Bui, Mode of Failure of Rib Fixation With Absorbable Plates: A Clinical and Numerical Modeling Study, Western Australia, 2010, pp. 1225-1233.
    Silvana Marasco, FRACS, Susan Liew, FRACS, Elton Edwards, FRACS, Dinesh Varma, FRANZCR,, Analysis of bone healing in flail chest injury Do we need to fix both fractures per rib, Victoria, Australia, 2014, pp. 452-458.
    Kao-Shang Shih, Thanh An Truong, Ching-Chi Hsu and Sheng-Mou Hou, Biomechanical investigation of different surgical strategies for the treatment of rib fractures using a three-dimensional human respiratory model, Taipei, Taiwan, 2017, pp. 93-102.
    Askhan Vaziri, Hamid Nayeb-Hashemi, B. Akhavan-Tafti, Computational model of rib movement and its application in studying the effects, Stanford, CA, USA, 2010, pp. 257-264.
    Carlos Nelson Elias, José Henrique Cavalcanti Lima, Ruslan Z Valiev, Marc A Meyers, Biomedical Applications of Titanium, Rio de Janeiro, 2008, pp. 46-49.
    Rina Sakai, Terumasa Matsuura, Kensei Tanaka, Kentaro Uchida, Masaki Nakao, and Kiyoshi Mabuchi, Comparison of Internal Fixations for Distal Clavicular Fractures Based on Loading Tests and Finite Element Analyses, Kanagawa, Japan, 2014, pp. 1-6.
    Zakaria EL Ouaaid, Aboulfazl Shirazi Adl, Andre Plamondon, Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability, Montréal,Québec,Canada, 2015, pp. 946-952.
    Michel Behr, Jeremie Pérès, Maxime Llari, Yves Godio, Yves Jammes, Christian Brunet, A Three-Dimensional Human Trunk Model for the Analysis of Respiratory Mechanics, Marseille, France, 2009, pp. 014501-1-014501-4.
    Theodore A. Wilson, Alexandre Legrand, PierreAlain and Andre De Troyer, Respiratory effects of the external and internal intercostal muscles in humans, Minneapolis, MN, USA, 2001, pp. 319-330.
    Guangzhi Zhang, Xian Chen1, Junji Ohgi, Toshiro Miura, Akira Nakamoto, Chikanori Matsumura, Seiryo Sugiura and Toshiaki Hisada, Biomechanical simulation of thorax deformation using finite element approach, Ube, Japan, pp. 1-18.
    Jonathan Rafe Sales, Thomas J. Ellis, Joel Gillard, Qi Liu, Joyce C. Chen, Bruce Ham, John C. Mayberry, Biomechanical Testing of a Novel, Minimally Invasive Rib Fracture Plating System, Portland, Oregon, 2008, pp. 1270-1274.
    Peter L. Althausen, Steven Shannon, Chad Watts, Kenneth Thomas, Martin A. Bain, Daniel Coll, P-AC, Timothy J. O’Mara, and Timothy J. Bray, Early Surgical Stabilization of Flail Chest With Locked Plate Fixation, Reno, NV., 2011, pp. 641-648.
    Anat Ratnovsky, David Elad, Pinchas Halpern, Mechanics of respiratory muscles, Tel Aviv, Israel, 2008, pp. 82-89.
    Akın Eraslan Balcı, Șevval Eren, Ömer Çakır, M Nesimi Eren, Open Fixation in Flail Chest: Review of 64 Patients, Diyarbakır, Turkey, 2004, pp. 11-15.
    Pato MPM, Santos NJG, Areias P, Pires EB, De Carvalho M, Pinto S, Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases, Lisbon, Portugal, 2010, pp. 505-513.
    Didier Lardinois, Thorsten Krueger, Michael Dusmet, Mathias Gugger, Pulmonary function testing after operative stabilisation of the chest wall for flail chest, Berne, Switzerland, 2001, pp. 496-501.

    無法下載圖示 全文公開日期 2025/07/01 (校內網路)
    全文公開日期 2025/07/01 (校外網路)
    全文公開日期 2025/07/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE