簡易檢索 / 詳目顯示

研究生: 谷方羽
Fang-Yu Ku
論文名稱: 富含奈米銀粒子的聚丙烯腈碳化纖維薄膜的開發與其在抗菌敷料應用性之評估
Preparation and evaluation of silver nanoparticles-containing carbonized polyacrylonitrile nanofibers: in vitro and in vivo studies
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 駱俊良
Chun-Liang Lo
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 153
中文關鍵詞: 聚丙烯腈奈米銀靜電紡絲碳纖維
外文關鍵詞: Polyacrylonitrile, Silver nanoparticle, Electrospinning, Carbon fiber
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是開發一種具有抗菌特性的新型傷口敷料 在這項 研究 中討論
    了一些初步結果。含有銀離子的聚丙烯腈 (PAN)纖維 薄 膜主要通過靜電紡絲 系統 製
    備, 以 抗壞血酸 作為 還原劑 可得含銀 量 0.08 M之 PAN薄膜 ( 最後,進
    行高溫煅燒碳化以將 複 合材料轉化為含有銀 奈米 顆粒的碳 奈 米纖維 (Calcined AgPAN)。
    透 過場發射 掃描式電子顯微鏡 (FE SEM)及能量色散 X射線光譜 (EDS)分析 薄
    膜之表面形貌及成分 。 利用 傅 立 葉轉換紅外光譜 (FTIR)及高解析 X射線光電子能
    譜 儀 (XPS)分析 其化學鍵結 ,發現 AgPAN之 結構經高溫處理後已環化。 抗菌能力
    分析 使用革蘭氏陽性細菌金黃色葡萄球菌 (Staphylococcus aureus, BCRC 10781)進
    行 抑菌圈測試 (Inhibition Zone),定性複合 材料的抗菌特性 ,並藉由殺菌率測試
    (Sterilization Rate Test),定量複合材料之殺菌率 Calcined AgPAN在 5小時後殺菌
    率已達到 99.32%,殺菌效率明顯高 於 AgPAN。 而 銀離子 釋放 測試中,在 0~48小
    時大量釋放,並在之後持續緩慢釋放, Calcined AgPAN之釋放量 也 高出 AgPAN許
    多。
    生物體外測試使用小鼠纖維母細胞 (3T3 cell)為對象進行細胞存活率測試,細
    胞存活率都有達到 85%以上, 在活體動物實驗中, 對小 黑 鼠 (C57BL/6JNarl)進行動
    物實驗。在小鼠背部 進行皮膚切開手術,製造一 1.2 cm××1.2 cm之創傷,進行細菌
    接種感染, 一共四組分別為 Aquacel(市售抗菌敷料 )、 Pure PAN、 AgPAN、 Calcined AgPAN,以 敷料進行治療並觀察 小黑鼠體重、傷口菌落數、 傷口 面積癒合情形 評
    估其效果 。


    The purpose of this study was to develop a new wound dressing with antibacterial properties. The polyacrylonitrile (PAN) fiber film containing silver ions was mainly prepared by an electrospinning system, and ascorbic acid was used as a reducing agent to obtain a PAN film containing 0.08 M silver (AgPAN). Finally, high temperature calcination carbonization is carried out to the fiber. The material was converted to carbon nanofibers containing silver nanoparticles (Calcined AgPAN).
    The surface morphology and composition of the film were analyzed by field emission scanning electron microscopy (FE SEM) and energy dispersive X-ray spectroscopy (EDS). The chemical bonding was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-resolution X-ray photoelectron spectroscopy (XPS). It was found that the structure of AgPAN was cyclized after high temperature treatment. We use Gram-positive bacteria Staphylococcus aureus (BCRC 10781) as the object for the inhibition zone test to analyze the antibacterial activity. In addition, antibacterial properties of the composite were quantified by sterilization rate test. the sterilization rate of calcined AgPAN reached 99.32% after only 5 hours, and the sterilization efficiency was significantly higher than AgPAN. In the silver ion release test, a large amount of release was observed from 0 to 48 hours, and the following was a sustained release. The release amount of calcined AgPAN was significantly higher than that of AgPAN.
    In vitro experiment, we used mouse fibroblasts (3T3 cell) for the cell viability test, and the cell viability were all over 85%. In vivo experiments, black mice (C57BL/6JNarl) were subjected to animal experiments. A skin incision was performed on the back of the mouse to create a 1.2 cm × 1.2 cm wound for bacterial infection. A total of four groups were Aquacel(Commercial antibacterial dressings), Pure PAN, AgPAN, and Calcined AgPAN. The dressing was used to treat and the weight of mice, the number of wound colonies and the healing of the wound area were observed. The effects of each group will be evaluated.

    摘要 ................................................................................................................................... I ABSTRACT ..................................................................................................................... II 誌謝 ................................................................................................................................ III 目錄 ................................................................................................................................ IV 圖目錄 .......................................................................................................................... VIII 表目錄 .......................................................................................................................... XIII 英文縮寫表 ................................................................................................................. XIV 第1章、 緒論 ................................................................................................................ 1 1.1研究動機與目的 .................................................................................................... 1 1.2實驗流程 ................................................................................................................ 2 第2章、 文獻回顧 ........................................................................................................ 3 2.1皮膚構造及功能 .................................................................................................... 3 2.1.1 表皮層(Epidermis) .......................................................................................... 3 2.1.2 真皮層(Dermis) .............................................................................................. 4 2.1.3 皮下組織(Subcutis) ........................................................................................ 4 2.2傷口護理 ................................................................................................................ 5 2.2.1 傷口修復機制 ................................................................................................. 5 2.2.2 現有傷口敷料研究文獻回顧 ......................................................................... 6 2.3 奈米銀 ................................................................................................................... 9 2.3.1 奈米銀殺菌機制 ............................................................................................. 9 2.3.2奈米銀合成法 ................................................................................................ 10 2.4 聚丙烯腈(Polyacrylonitrile,PAN) .................................................................... 11 2.5 碳纖維製備文獻回顧 ......................................................................................... 12 2.6 靜電紡絲 ............................................................................................................. 14 2.7 金黃色葡萄球菌 ................................................................................................. 15

    1. Prabhu, S. and E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2012. 2(1): p. 32.
    2. Tran, Q.H., V.Q. Nguyen, and A.-T. Le, Corrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives (Adv. Nat. Sci: Nanosci. Nanotechnol. 4 033001). Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018. 9(4): p. 049501.
    3. Ji, L., et al., Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Nanotechnology, 2008. 19(8): p. 085605.
    4. Yun, K.M., et al., Nanoparticle filtration by electrospun polymer fibers. Chemical Engineering Science, 2007. 62(17): p. 4751-4759.
    5. Yun, K.M., et al., Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separation and Purification Technology, 2010. 75(3): p. 340-345.
    6. Rahaman, M.S.A., A.F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432.
    7. Learning, L., Boundless Anatomy and Physiology - Structure of the Skin.
    8. Barrios Muriel, J., Analysis of Minimum Strain Anatomical Lines using Digital Image Correlation and 3D Scanning Technologies as Biomechanical Criteria for Design of Wearable Rehabilitation Devices Manufactured by 3D Printing. 2017.
    9. OpenStax, ANATOMY AND PHYSIOLOGY. 2013: p. 5.1 Layers of the Skin.
    10. Baumann, L.S., & Baumann, L, Cosmetic dermatology. 2009.
    11. Ebling, F.J.G., Integument. 2017.
    12. Hibbs, R.G., G.E. Burch, and J.H. Phillips, The fine structure of the small blood vessels of normal human dermis and subcutis. American Heart Journal, 1958. 56(5): p. 662-670.
    13. Sandström, S., The antibacterial effect of silver with different release kinetics. 2011.
    14. NG, J., Skin: a natural history. 2006: p. p.266.
    15. Vowden, K. and P. Vowden, Wound dressings: principles and practice. Surgery (Oxford), 2017. 35(9): p. 489-494.
    16. Goossens, A. and M.B. Cleenewerck, New wound dressings: classification,
    46
    tolerance. Eur J Dermatol, 2010. 20(1): p. 24-6.
    17. 楊瑞永醫師楊瑞永醫師, 慢性傷口的敷料使用原則慢性傷口的敷料使用原則. 2008. 29(10): p. 11-12.
    18. Chaganti, P., et al., A systematic review of foam dressings for partial thickness burns. The American Journal of Emergency Medicine, 2019.
    19. Lundin, J.G., et al., Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Mater Sci Eng C Mater Biol Appl, 2017. 79: p. 702-709.
    20. 蔡婷芳蔡婷芳 and 戴玉慈戴玉慈, 傷口照護與敷料運用傷口照護與敷料運用. 2007. 24(1): p. 69-75.
    21. Ovington, L.G., Advances in wound dressings. Clin Dermatol, 2007. 25(1): p. 33-8.
    22. Paul, W. and C.P. Sharma, Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs, 2004. 18(1): p. 18-23.
    23. Newman, G.R., et al., Visualisation of bacterial sequestration and bactericidal activity within hydrating Hydrofiber wound dressings. Biomaterials, 2006. 27(7): p. 1129-39.
    24. 黃穎斐黃穎斐, 膠原蛋白:生醫敷料及人工皮膚膠原蛋白:生醫敷料及人工皮膚. 2004(380): p. 24-29.
    25. Brett, D., A Review of Collagen and Collagen-based Wound Dressings. Vol. 20. 2015. 347-56.
    26. Singh, O., et al., Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study. Journal of cutaneous and aesthetic surgery, 2011. 4(1): p. 12-16.
    27. Qin, Y., Antimicrobial textile dressings to manage wound infection. 2019: p. 193-210.
    28. Simoes, D., et al., Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm, 2018. 127: p. 130-141.
    29. Dakal, T.C., et al., Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol, 2016. 7: p. 1831.
    30. Marambio-Jones, C. and E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010. 12(5): p. 1531-1551.
    31. Bapat, R.A., et al., An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl, 2018. 91: p. 881-898.
    32. Qing, Y., et al., Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine, 2018. 13: p. 3311-3327.
    33. 张宗涛张宗涛, et al., 化学还原法制备纳米级化学还原法制备纳米级 Ag 粉高分子保护机理研究粉高分子保护机理研究. 1996.
    34. Khodashenas, B. and H.R. Ghorbani, Synthesis of silver nanoparticles with
    47
    different shapes. Arabian Journal of Chemistry, 2015.
    35. Sun, Y. and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. SCIENCE, 2002. VOL 298.
    36. Qin, Y., et al., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 372(1-3): p. 172-176.
    37. Agnihotri, S., S. Mukherji, and S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv., 2014. 4(8): p. 3974-3983.
    38. Wo, A.-Y., Preparation and characterization of Ag-Cu bimetallic nanoparticles by chemical reduction method. 2006.
    39. Nataraj, S.K., K.S. Yang, and T.M. Aminabhavi, Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in Polymer Science, 2012. 37(3): p. 487-513.
    40. Rujitanaroj, P.-o., N. Pimpha, and P. Supaphol, Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. Journal of Applied Polymer Science, 2010: p. NA-NA.
    41. Shi, Y., et al., Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Mater Sci Eng C Mater Biol Appl, 2015. 51: p. 346-55.
    42. Saufi, S.M. and A.F. Ismail, Development and characterization of polyacrylonitrile(PAN) based carbon hollow fiber membrane. 2002. 24 (Suppl.).
    43. 柯澤豪柯澤豪 and 梁恆嘉梁恆嘉, 碳纖維的故事碳纖維的故事. 2012(470): p. 16-22.
    44. Iversen, C.B., Characterization of Polyacrylonitrile Carbon Fibers. 2012.
    45. Morgan, P., Carbon fibers and their composites. 2005: CRC press.
    46. Chang, H., et al., Structural and Functional Fibers. Annual Review of Materials Research, 2017. 47(1): p. 331-359.
    47. Frank, E., et al., Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed Engl, 2014. 53(21): p. 5262-98.
    48. Akato, K., Pretreatment and pyrolysis of rayon-based precursor for carbon fibers. 2012.
    49. Hegde, R.R., A. Dahiya, and M. Kamath, Carbon fibers. University of Tennessee, 2004.
    50. Rand, B., The Thermal Processing and Rheological Behaviour of Pitch, in Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance, B. Rand, S.P. Appleyard, and M.F. Yardim, Editors. 2001, Springer
    48
    Netherlands: Dordrecht. p. 135-150.
    51. Fair, W., THE ASPHALT SYMPOSIUM Part I INTRODUCTION. Industrial & Engineering Chemistry, 1966. 58(4): p. 26-27.
    52. Rodríguez, J.J., T. Cordero, and J. Rodríguez-Mirasol, Carbon Materials from Lignin and Their Applications, in Production of Biofuels and Chemicals from Lignin, Z. Fang and J.R.L. Smith, Editors. 2016, Springer Singapore: Singapore. p. 217-262.
    53. Rosas, J.M., et al., Preparation of Different Carbon Materials by Thermochemical Conversion of Lignin. Frontiers in Materials, 2014. 1(29).
    54. Kilzer, F.J. and A. Broido, Speculations on the nature of cellulose pyrolysis. Pyrodynamics. 2: 151-163, 1965. 2: p. 151-163.
    55. Donnet, J.-B. and R.C. Bansal, Carbon fibers. 1998: Crc Press.
    56. Chang, H., et al., Carbon fibers from polyacrylonitrile/cellulose nanocrystal nanocomposite fibers. Carbon, 2019. 145: p. 764-771.
    57. Tsai, J.-S. and C.-H. Lin, Effect of comonomer composition on the properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991. 43(4): p. 679-685.
    58. Bhardwaj, N. and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010. 28(3): p. 325-47.
    59. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
    60. Wang, M. and Q. Zhao, Electrospinning and Electrospray for Biomedical Applications. 2019: p. 330-344.
    61. Shi, X., et al., Electrospinning of Nanofibers and Their Applications for Energy Devices. Journal of Nanomaterials, 2015. 2015: p. 1-20.
    62. Basson, N., Free volume of electrospun organic-inorganic copolymers. 2014.
    63. Thurlow, L.R., et al., Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol, 2011. 186(11): p. 6585-96.
    64. Gomez, M.I., et al., Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med, 2004. 10(8): p. 842-8.
    65. Riss, T.L., et al., Cell viability assays. 2016.
    66. Zielińska, A., et al., Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry, 2009. 1(2): p. 1560-1566.
    67. Abdo, H.S., et al., Antibacterial effect of carbon nanofibers containing Ag nanoparticles. Fibers and Polymers, 2014. 14(12): p. 1985-1992.
    49
    68. 洪崧貿洪崧貿, 梁智翔梁智翔, and 黃啟祥黃啟祥, 熱處理條件對熱處理條件對 PAN 系碳纖維微結構及其擬系碳纖維微結構及其擬電容性之影響電容性之影響. 鑛冶鑛冶: 中國鑛冶工程學會會刊中國鑛冶工程學會會刊, 2013(223): p. 85-92.
    69. Karacan, I. and G. Erdogan, The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage. Fibers and Polymers, 2012. 13(3): p. 295-302.
    70. Yin, L., et al., Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy & Environmental Science, 2012. 5(5): p. 6966.
    71. Wang, Y., et al., Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Materials Letters, 2005. 59(24-25): p. 3046-3049.
    72. Kim, C., et al., Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. Journal of Raman Spectroscopy, 2004. 35(11): p. 928-933.
    73. 吴娟霞吴娟霞, 徐华徐华, and 张锦张锦, 拉曼光谱在石墨烯结构表征中的应用拉曼光谱在石墨烯结构表征中的应用. 化学学报化学学报, 2014. 72(3): p. 301-318.
    74. Ko, T.H., W.S. Kuo, and C.H. Hu, Raman spectroscopic study of effect of steam and carbon dioxide activation on microstructure of polyacrylonitrile‐based activated carbon fabrics. Journal of applied polymer science, 2001. 81(5): p. 1090-1099.
    75. Soares, M., et al., Biosynthesis of silver nanoparticles using Caesalpinia ferrea (Tul.) Martius extract: physicochemical characterization, antifungal activity and cytotoxicity. PeerJ, 2018. 6: p. e4361.
    76. Zhao, Z.-P., et al., Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma. Journal of Membrane Science, 2004. 232(1-2): p. 1-8.
    77. Cohen, N. and M.S. Silverstein, Synthesis of emulsion-templated porous polyacrylonitrile and its pyrolysis to porous carbon monoliths. Polymer, 2011. 52(2): p. 282-287.
    78. Hochart, F., et al., Plasma surface treatment of poly(acrylonitrile) films by fluorocarbon compounds. Applied Surface Science, 1999. 142(1-4): p. 574-578.
    79. Janus, R., et al., Thermal transformation of polyacrylonitrile deposited on SBA-15 type silica. Journal of Thermal Analysis and Calorimetry, 2012. 110(1): p. 119-125.
    80. Jagst, E., Surface Functional Group Characterization Using Chemical Derivatization X-ray Photoelectron Spectroscopy (CD-XPS). 2011.
    81. Kumari, P. and P. Majewski, Adsorption of Albumin on Silica Surfaces Modified
    50
    by Silver and Copper Nanoparticles. Journal of Nanomaterials, 2013. 2013: p. 1-7.
    82. Wattanodorn, Y., et al., Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polymer Testing, 2014. 40: p. 163-169.
    83. Singh, A., Skin Sensitization due to Electron Beam Cured Polyurethane Pressure Sensitive Adhesive Tape in Guinea Pigs. Vol. 10. 2014. 9-17.
    84. Shara, M., et al., Safety and toxicological evaluation of a novel niacin-bound chromium(III) complex. Vol. 99. 2005. 2161-83.
    85. Golla, S., et al., Quantitative structure-property relationships modeling of skin irritation. Toxicol In Vitro, 2009. 23(1): p. 176-84.
    86. Ohia, S., et al., Safety and mechanism of appetite suppression by a novel hydroxycitric acid extract (HCA-SX). Vol. 238. 2002. 89-103.

    無法下載圖示 全文公開日期 2024/10/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE