簡易檢索 / 詳目顯示

研究生: Tazebey
ANDERGACHEW MEKONNEN BERHE
論文名稱: 利用秒飛雷射放射合成金量子粒子及其特性與基於鋅材料染料敏化太陽能電池之研究
Synthesis and properties of gold quantum particles under femtosecond pulse laser irradiation and their effect on ZnO-based DSSC.
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 124
中文關鍵詞: 金量子粒子等離子體納米金顆粒量子特性飛秒雷射脈衝輻照照射時間染料敏化太陽能電池
外文關鍵詞: gold quantum particles, plasmonic gold nanoparticles, quantum property, femtosecond laser pulses irradiation, irradiation time, dye-sensitized solar cell
相關次數: 點閱:271下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成了金量子團簇和納米粒子,研究了它們在飛秒雷射輻照水中的性質。同時所產生的等離子體納米金顆粒也用於染料敏化太陽能電池(DSSCs)的應用。因此,納米金粒子的合成及其量子特性和各自的應用是該研究的主要目標。
    在第一項工作中,發現了在水中飛秒雷射脈衝輻照下金量子團簇和納米粒子的量子特性的合成和因素。在實驗中,通過將飛秒雷射照射金離子並且不添加任何還原劑來製備金量子團簇,量子大小的納米粒子。 利用原子力顯微鏡、透射電子顯微鏡、高分辨率透射顯微鏡、紫外 - 可見光譜,螢光分光光度計和一些計算來分析它們產生顆粒的量子特性。通過照射時間和飛秒脈衝雷射強度的影響,可以研究量子團簇和納米粒子的尺寸和量子特性。該方法將提高對金原子團簇(量子團簇)的量子特性的理解,特別是那些反映從孤立原子到納米粒子的過渡理論,並且比起化學和/或物理還原方法更具有簡單、純度和尺寸可控性方面的優勢。 在第二項工作中,氧化鋅納米線(ZnONW)在奈米纖維纖維素存在下通過原位方法生長,以製造有彈性和導電複合膜。該導電複合膜用作基底以沉積氧化鋅納米顆粒,碳點和染料敏化太陽能電池的金納米顆粒工作電極的複合物,其中在飛秒激光照射下產生等離子體金納米顆粒。優化的光陽極提供了導電聚合物柔性薄膜對電極的效率。該效率低於由在固體導電基底上具有氧化鋅納米顆粒的複合工作電極等離子體金納米顆粒和Pt對電極組成。


    Gold quantum clusters and nanoparticles were synthesized and studied their property under femtosecond laser irradiation in water. Additionally, the produced plasmonic gold nanoparticles were also used for dye-sensitized solar cell (DSSC) application. Hence, synthesis, quantum property and respective applications of the gold nanoparticles are the major objectives of the study.
    In the first work, the synthesis and factors that govern their quantum properties of gold quantum clusters and nanoparticles under femtosecond laser pulses irradiation in water were studied. In the experiments, gold quantum clusters, and nanoparticles were produced by irradiating femtosecond laser to the gold ions without adding any reducing agent. Atomic force microscopy, transmission electron microscope, high resolution-transmission microscope, UV-Visible spectroscopy and some calculations were applied to analyze their quantum property of the produced particles. The size and properties of quantum clusters and nanoparticles can be studied through the influence of irradiation time and intensity of femtosecond pulse laser. The strategy leads to improve the understanding about quantum properties of gold atomic clusters (quantum clusters). The results particularly reflected the transition from isolated atoms to nanoparticles and demonstrated advantages of physical reduction method compared to chemical methods with regard to technical simplicity, product purity and size controllability.
    In the second work, zinc oxide (ZnO) nanowires were grew by in situ method on flexible substrate This conductive composite film was used as a substrate to deposit composites of ZnO nanoparticles, carbon dots and gold nanoparticles working electrodes of the dye-sensitized solar cells (DSSCs), where plasmonic gold nanoparticles were produced under femtosecond laser irradiation. The optimized photoanodes provided the efficiency of conductive polymer flexible film counter electrode. This efficiency was lower than that of DSSC consisting of a composite working electrode plasmonic gold nanoparticles with ZnO nanoparticles on solid conductive substrate and a Pt counter electrode.

    Abstract III Acknowledgments V List of Abbreviation VI Table of Contents VII List of Figures XII List of Tables XIV 1.1. Background 1 1.2. Plasmonics and Property of Metallic Nanoparticles 4 1.2.1. Plasmonics 4 1.2.2. Mie theory of isolated metal nanoparticles 5 1.2.3. Surface plasmon resonance of metal nanoparticles 6 1.2.4. Localized surface plasmon resonance of metal NPs 8 1.3. Confinement effect of quantum particles and their DOS 10 1.4. Metal Quantum Clusters 11 1.4.1. Science of quantum clusters 11 1.4.2. Properties of metal quantum clusters 12 1.4.2.1. Electronic size effects 13 1.4.2.2. Optical size effect 15 1.5. Synthesis and Interaction of Femtosecond laser with Matter 17 1.5.1. Bottom-up approach 19 1.5.2. Top-down approach 20 1.6. Plasmon enhanced Dye Sensitized Solar Cell 21 1.6.1. Introduction to photovoltaics 21 1.6.2. Dye sensitized solar cell 22 1.6.3. Effect of plasmonic metal NPs in DSSCs 24 1.7. Objectives 28 CHAPTER TWO: Synthesis and Properties of Gold Quantum Particles under Femtosecond Pulse Laser Irradiation 30 2.1. Motivation 30 2.2. Experimental Procedure 32 2.2.1. Materials and Methods 32 2.2.2. Preparation of gold quantum clusters 32 2.3. Results and Discussion 33 2.3.1. Effect of irradiation time on size of gold quantum particles 34 2.3.2. Crystallinity of gold quantum particles 44 2.3.3. Effect of concentration on size of gold nanoparticles 44 2.3.4. Size-dependent Optical Spectra 47 2.3.5. Electronic transition of gold quantum particles 50 2.3.6. Fluorescence property of gold quantum particles 51 2.3.7. Quantum efficiency (Φ) of gold quantum particles 54 2.4. Conclusions 56 CHAPTER THREE: Effects of Plasmonic Gold Nanoparticles on ZnO-based Dye-Sensitized Solar Cells 58 3.1. Motivation 58 3.2. Experimental 62 3.2.1. Synthesis of TEMPO-Oxidized Cellulose Nanofiber (TOCNF) 63 3.2.2. Fabrication of counter-electrode (CE) 64 3.2.3. Synthesis of zinc oxide nanoparticles & zinc oxide nanowires 64 3.2.4. Synthesis of Au NPs and Carbon dots (Cdots) 65 3.3. Preparation of Working Electrode (WE) 65 3.3.1. The composite of TOCNF and ZnO NWs (TOCNF/ZnO NW) 66 3.3.2. Composite of ZnO, and ZnO@Cdot with TOCNF@ZnO NW film 66 3.3.3. Composite ZnO NP/Au and ZnO NP@Cdot/Au on TOCNF/ZnO NW 67 3.4. Assembling of Flexible Dye-Sensitized Solar Cell 67 3.5. Results and Discussion 68 3.5.1. Characterization of TOCNF, ZnO, Au NPs and their Composite 68 3.5.1.1. Fourier Transform Infrared Spectroscopy (FTIR) 68 3.5.1.2. Morphology of ZnO NW and Au NPs 69 3.5.1.3. Surface area 70 3.5.1.4. X-ray diffractometer (XRD) 72 3.5.1.4.1. Effect of Au NPs on ZnO NPs, and their composites 72 3.5.1.4.2. Effect of ZnO NW and PPy on TOCNF 74 3.5.1.5. Band gap energy 75 3.5.2. Photovoltaic measurement of DSSC 77 3.5.2.1. Effect of doping ZnO on TOCNF/ZnO NW electrode of DSSCs 78 3.5.2.2. Effect of ZnO@Cdots deposited on TOCNF/ZnO NW photoanode 80 3.5.2.3. Effect of plasmonic Au NPs on a flexible electrode 83 3.5.2.3.1. ZnO NP/Au doped on TOCNF@ZnO NW 83 3.5.2.3.2. ZnO NP@Cdot/Au/RdB doped on TOCNF@ZnO NW 85 3.5.2.4. Effect of Au NPs on ZnO NP-based photoanode on solid substrate 87 3.5.2.4.1. Effect of Au concentration on the ZnO NP-based photoanode 88 3.5.2.4.2. Effect of illumination light intensity on PCE of plasmonic DSSC 90 3.6. Conclusions 91 CHAPTER FOUR: Summery and General Conclusions 93 References 95

    1. Freestone I., Meeks N., Sax M., Higgitt C. The Lycurgus cup-a roman nanotechnology. GOLD BULL., 2007. 40, 270-277.
    2. Faraday M., The Bakerian Lecture: Experimental relations of gold (and other metals) to light. Philos. Trans. Royal Soc, 1857. 147, 145-181.
    3. Mie, G., Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 1908. 25, 377-445.
    4. Horvath H., Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. J Quant Spectrosc Ra. 2009. 110 787-799.
    5. Willets, K.A., and Van Duyne R.P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58, 267-97.
    6. Maier S.A., Brongersma L.M., Kik G.P., Meltzer S., Requicha A.G., and Atwater A.H, Plasmonics: a route to nanoscale optical devices. Adv. Mater. 2001. 13, 1501-1505.
    7. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nat Mater, 2010. 9, 205-13.
    8. Imae, T., Nanolayer Research: Methodology and Technology for Green Chemistry. Elsevier, 2017, 115-154.
    9. Cao E., Lina W., Sun M., Liang W. and Song Y., Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics, 2018. 7, 145-17.
    10. Link, S. and El-Sayed M.A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Phys. Chem. B, 1999, 103, 8410-8426.
    11. Scholl, J.A., Koh A.L., and Dionne J.A., Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012. 483, 421-427.
    12. Ghosh S.K. and Pal T., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev., 2007. 107, 4797-4862.
    13. Chen, W.T., Y.J. Hsu, and P.V. Kamat, Realizing Visible Photoactivity of Metal Nanoparticles: Excited-State Behavior and Electron-Transfer Properties of Silver (Ag8) Clusters. J Phys Chem Lett, 2012. 3, 2493-9.
    14. Yiyun Y. and Shaowei C. Surface manuipulation of the electronic energy of subnanometer-sized clusters an electrochemical and spectroscopic investigation. Nano Lett., 2002. 3, 75-79.
    15. Maier, S.A., Plasmonics: fundamentals and applications. Springer Science & Business Media LLC, 2007. 1-234.
    16. Surbhi L., Stephan L. and Naomi J. H., Nano-optics from sensing to waveguiding. Nat Photonics, 2007. 1, 641–648.
    17. Brongersma, M.L. and Kik P.G., Surface plasmon nanophotonics. Springer, 2007. 131, 1-269.
    18. Vlasta B.-K., Piercarlo F., and Jaroslav K., Quantum Chemistry of Small Clusters of Elements of Groups la, lb and I la: Fundamental Concepts, Predictions, and Interpretation of Experiments. Chem. Rev. 1991. 91, 035-1108.
    19. Raikar, U.S.; Tangod, V.B.; Mastiholi, B.M.; Fulari, V.J. Fluorescence quenching using plasmonic gold nanoparticles. OPT COMMUN, 2011. 284, 4761-4765.
    20. Rai, P., Plasmonic noble metal@metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustainable Energy & Fuels, 2019. 3, 63-91.
    21. Brack, M., The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. J. Mod. Phys., 1993. 65, 677-732.
    22. Murray, W.A. and W.L. Barnes, Plasmonic Materials. Adv. Mater., 2007. 19, 3771-3782.
    23. Joseph M. L., Prashant K. J., Trevor E. and A. Paul A., Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater, 2011. 10, 361-6.
    24. Roduner, E., Size matters: why nanomaterials are different. Chem Soc Rev, 2006. 35, 583-92.
    25. Manasreh, M.O., Introduction to nanomaterials and devices. Wiley Online Library, 2012. 119, 1-482.
    26. Zheng J., Zhang C., and Dickson R.M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett, 2004. 93, 077401-4.
    27. Tsukuda T., Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters. Bull. Chem. Soc. Jpn., 2012. 85, 2, 151-168.
    28. Stephan L., Simon F., Mostafa A. E., Schaaff T.G., and Robert L. W., Visible to Infrared Luminescence from a 28-Atom Gold Cluster. J. Phys. Chem. B, 2002, 106, 3410-3415.
    29. Connerade, J.P. and Solov'yov A.V., Latest advances in atomic cluster collisions: fission, fusion, electron, ion and photon impact. World Scientific., 2004, 1-398.
    30. Jain, P.K., A DFT-Based Study of the Low-Energy Electronic Structures and Properties of Small Gold Clusters. Structural Chemistry, 2005. 16, 421-426.
    31. Kubo, R., Kawabata A., and. Kobayashi S.-i, Electronic properties of small particles. Ann. Rev. Mater. Sci, 1984. 14, 49-66.
    32. Piñeiro, Y., Rivas J., and López-Quintela M.A. Quintela L.P., The Emergence of Quantum Confinement in Atomic Quantum Clusters. 2014. 81-105.
    33. Qian H., Zhu M., Wu Z., and Jin R., Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of chem. Research, 2012. 45, 1470–1479.
    34. Nimtz G. and Marquardt P., H.G., Size-Induced Metal-Insulator Transition in Metals and Semiconductors. J. Cryst Growth, 1988. 86, 66-71.
    35. Wilcoxon J. P., Martin J.E., and Provencio P., Optical properties of gold and silver nanoclusters investigated by liquid chromatography. J. Chem. Phys., 2001. 115, 998-1008.
    36. Morton, S.M., Silverstein D.W., and Jensen L., Theoretical studies of plasmonics using electronic structure methods. Chem Rev, 2011. 111, 3962-94.
    37. Daniel M-C and Astruc D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004. 104, 293-346.
    38. Hirano M., Kawamura K-i, Kamioka H., Miura T., Periodic Nanostructures with Interfering femtosecond lasers. J Nanosci Nanotechnol, 2004. 8, 457–468.
    39. Nakamura T., Takasaki K., Ito A., Sato S., Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution. Appl Surf Sci, 2009. 255, 24, 9630-9633.
    40. Brown, M.S. and Arnold C.B., Fundamentals of laser-material interaction and application to multiscale surface modification, in Laser precision microfabrication. Springer Ser. Mater. Sci., 2010, 135, 91-120.
    41. Muttaqin, Nakamura T., and Sato S., Synthesis of gold nanoparticle colloids by highly intense laser irradiation of aqueous solution by flow system. Appl. Phys. A, 2015. 120, 881-888.

    42. Hahn A., Barcikowski S. and Boris N. C., Influences on Nanoparticle Production during Pulsed Laser Ablation. J LASER MICRO NANOEN., 2008. 3, 72-77.
    43. HerbaniY., Nakamura T., Sato S., Synthesis of platinum-based binary and ternary alloy nanoparticles in an intense laser field. J. Colloid Interface Sci. 2012. 375, 78-87.
    44. Nakamura T., Herbani Y., and Sato S., Fabrication of gold-platinum nanoparticles by intense, femtosecond laser irradiation of aqueous solution. Opt. Soc. Am., 2010. 94.
    45. Nakamura T., Magara H., Herbani Y., Sato S., Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl. Phys. A, 2011. 104, 1021-1024.
    46. John M., Tibbetts K., One-Step Femtosecond Laser Ablation Synthesis of Sub-5 Nm Gold Nanoparticles Embedded in Silica. Appl. Surf. Sci. 2018. 490, 1-43.
    47. Tana,D. Zhoua S., Qiua J., KhusroaN., Preparation of functional nanomaterials with femtosecond laser ablation in solution. J. Photochem. Photobiol. C, 2013. 17, 50-68.
    48. Gasser T., Guivarch C., Tachiiri K., Jones C.D. and Ciais P., Negative emissions physically needed to keep global warming below 2 degrees 0C. Nat Commun, 2015. 6, 7958-7.
    49. Bella F., Gerbaldi C., Barolob C. and Gra¨tzel M., Aqueous dye-sensitized solar cells. Chem Soc Rev, 2015. 44, 3431-73.
    50. O’regan B. and Grätzel M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353, 737-739
    51. Zarick H. F., Hurd O., Webb J.A., Hungerford C., Erwin W.R. and Bardhan R., Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures. ACS Photonics, 2014. 1, 806-811.
    52. Hwang H-J., Joo S-J., Patilb S. A. and Kim H-S., Efficiency enhancement in dye-sensitized solar cells using the shape/size-dependent plasmonic nanocomposite photoanodes incorporating silver nanoplates. Nanoscale, 2017. 9, 7960-7969.
    53. Hashmi S.G., Moehl T., Halme J., Ma Y., Saukkonen T., Yella A., Giordano F., Decoppet J.D., Zakeeruddin S. M., Lunda P. and Gr¨atzel M., A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. J. Mater. Chem. A, 2014. 2, 19609-19615.
    54. Lina L-Y., Yeha M-H., Leea C-P, Choua C-Y, Vittal R., Ho K-C., Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochim. Acta, 2012. 62, 341-347.
    55. Shahbazyan, T.V. and Stockman M.I., Plasmonics: theory and applications. Springer Ser. Solid-State Sci. 2013. 15, 1-581.
    56. Sharma M., Pudasaini P.R., Ruiz-Zepeda F., Vinogradova E. and Ayon A.A., Plasmonic effects of Au/Ag bimetallic multispiked nanoparticles for photovoltaic applications. ACS Appl. Mater. Interfaces, 2014. 6, 15472-9.
    57. Li J., Chen X., Ai N., Hao J., Chen Q., Strauf S., Shi Y., Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem. Phys. Lett., 2011. 514, 141-145.
    58. Alia A.K., Erten-Ela S., Hassoon K.I., Ela C., Plasmonic enhancement as selective scattering of gold nanoparticles based dye sensitized solar cells. Thin Solid Films, 2019. 671, 127-132.
    59. Mandal, P. and Sharma S., Progress in plasmonic solar cell efficiency improvement: A status review. Renewable and Sustainable Energy Reviews, 2016. 65, 537-552.
    60. Ganeshan D., Xie F., Sun Q., Li Y. and WeiM., Plasmonic Effects of Silver Nanoparticles Embedded in the Counter Electrode on the Enhanced Performance of Dye-Sensitized Solar Cells. Langmuir, 2018. 34, 5367-5373.
    61. Link S. and El-Sayed M.A., Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations. J. Phys. Chem. B, 1999. 103, 8410-8426.
    62. Cao L., Wang X., Meziani M.J., Lu F., Wang H., Luo G.P., Lin Y., Harruff B.A., Veca L.M., Murray D., Xie S-Y. and Sun Y-P., Carbon dots for multiphoton bioimaging. JACS, 2007. 129, 11318-11319.
    63. Narayanan R., Deepa M., Srivastava A.K. and Shivaprasad S.M., Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots. ChemPhysChem, 2014. 15, 1106-15.
    64. Villanueva-Cab J., Olalde-Velasco P., Romero-Contreras A., Zhuo Z., Pan F., Rodil S.E., Yang W. and Pal U., Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces, 2018. 10, 31374-31383.
    65. Bai L., Zhu L., Ang C.Y., Li X., Wu S., Zeng Y., Agren H. and Zhao Y., Iron(III)-quantity-dependent aggregation-dispersion conversion of functionalized gold nanoparticles. Chem. Eur. J., 2014. 20, 4032-7.
    66. Cleveland C.L., Landman U., Schaaff T.G., Shafigullin M.N., Stephens P.W. and Whetten R.L., Structural Evolution of Smaller Gold Nanocrystals The Truncated Decahedral Motif. Phys. Rev. Lett., 1997. 79.1873-1876.
    67. Fedrigo, S., Harbich W. and Buttet J., Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. J. Chern. Phys., 1993. 99, 5712-5717.
    68. Philip R., Chantharasupawong P., Qian H., Jin R. and Thomas J., Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett, 2012. 12, 4661-7.
    69. Haberlen O.D., Chung S-C., Stener M. and Rosch N., From clusters to bulk A relativistic density functional investigation on a series of gold clusters Aun , n = 5 6,... ,147. J. Chem. Phys, 1996. 106, 5189-5201.
    70. Wang Y., Chen J. and Irudayaraj J., Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS NANO, 2011. 5, 9718–9725
    71. Cui M., Zhao Y. and Song Q., Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trends Anal. Chem., 2014. 57, 73-82.
    72. Olesiak-Banska J., Waszkielewicz M. and Samoc M.,Two-photon chiro-optical properties of gold Au25 nanoclusters. Phys Chem Chem Phys, 2018. 20, 24523-24526.
    73. Zheng J., Nicovich P.R. and Dickson R.M., Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem, 2007. 58, 409-31.
    74. Alvarez M. M., Khoury J. T., Schaaff T. G., Shafigullin M. N., Vezmar I. and Whetten R. L., Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B, 1996. 101, 3706-3712.
    75. Gonzalez B. S., Rodriguez M. J., Blanco C., Rivas J., Lopez-Quintela M.A. and Martinho J.G., One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett, 2010. 10, 4217-21.
    76. Yang Y. and Chen S., surface manuipulation of the electronic energy of subnanometer-sized clusters an electrochemical and spectroscopic investigation. Nano Letters, 2003. 3. 75-79.
    77. Zhao J., Yang J. and Hou J.G., Theoretical study of small two-dimensional gold clusters. Phys. Rev. B, 2003. 67. 085404-6.
    78. Nakamura T., Mochidzuki Y. and Sato S., Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution. J. Mater. Res., 2011. 23, 968-974.
    79. Rodriguez1 J.I., Baltazar-Mendez1 M-I., Autschbach J. and Castillo-Alvarado F.L., Molecular (global) and atom-in-cluster (local) polarizabilities of medium-size gold nanoclusters: isomer structure effects. Eur. Phys. J. D, 2013. 67, 109-6.
    80. Shu G. W., Chen T. Y., Shen J. L., J. Lin C. A., Chang W. H., Chan W. H., Wang H. H., Yeh H. I. and Chou W. C., Interrelation of transport and optical properties in gold nanoclusters. Appl. Phys. Lett., 2010. 97, 123108-3.
    81. Nambiar S.R., Prathish K.P., Karthik G. and Rao T.P., Hybrid gold atomic cluster-cobalt oxide scaffolds for dual tandem electrocatalytic sensing of cysteine. Biosens. Bioelectron., 2011. 26, 3920-6.
    82. Yuan C. T., Lin C. A., Lin T. N., Chang W. H., Shen J. L., Cheng H. W. and Tang J., Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy. J Chem Phys, 2013. 139, 23431-5.
    83. Pommeret S., Gobert F., Mostafavi M., Lampre I. and Mialocq J.-C., Femtochemistry of the Hydrated Electron at Decimolar Concentration. J. Phys. Chem. A, 2001. 105, 11400-11406.
    84. Greiner W. and Solov’yov A., Atomic cluster physics: new challenges for theory and experiment. Chaos, Solitons & Fractals, 2005. 25, 835-843.
    85. Schaaff T. G., Shafigullin M. N., Khoury J. T., Vezmar I., Whetten R. L., Cullen W. G. and First P. N., Isolation of smaller nanocrystal Au molecules robust quantum effects in optical spectra. J. Phys. Chem. B, 1997. 101, 7885-7891.
    86. Garzón I. L., Michaelian K., Beltrán M. R., Posada-Amarillas A., Ordejón P., Artacho E., Sánchez-Portal D. and Soler J. M., Lowest Energy Structures of Gold Nanoclusters. Phys. Rev. Lett., 1998. 81, 1600-1603.
    87. Rodr´ıguez-V´azquez M.J., V´azquez-V´azquez C., Rivas J. and L´opez-Quintela M.A., Synthesis and characterization of gold atomic clusters by the two-phase method. Eur. Phys. J. D, 2009. 52, 23-26.
    88. Peinetti A. S., Herrera S.,. Gonza´lez G. A. and Battaglini F., Synthesis of atomic metal clusters on nanoporous alumina. Chem Commun., 2013. 49, 11317-9.
    89. Uppal M. A., Kafizas A., Ewinga M. B. and Parkin I. P., The room temperature formation of gold nanoparticles from the reaction of cyclohexanone and auric acid; a transition from dendritic particles to compact shapes and nanoplates. J. Mater. Chem. A, 2013. 1, 7351-7359.
    90. Qian H., Zhu M., Wu Z.and Jin R., Quantum Sized Gold Nanoclusters with Atomic Precision. Acc. Chem. Res., 2012. 49, 470–1479.
    91. Gharibshahia E., Saiona E., Ashrafa A., and Gharibshahia L., Size-Controlled and Optical Properties of Platinum Nanoparticles by Gamma Radiolytic Synthesis. Appl. Radiat. Isot., 2017. 130, 211-217.
    92. Wang S., Zhu X., Cao T. and Zhu M., A simple model for understanding the fluorescence behavior of Au25 nanoclusters. Nanoscale, 2014. 6, 5777-81.
    93. Williams, A.T.R., Winfield S.A. and Miller J.N., Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst, 1983. 108, 1067-1071.
    94. Shah S., Noor I. M., Pitawala I., Albinson J., Bandara T. M. W. J., Mellander B. -E. and Arof A. K., Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell. Optical Materials Express, 2017. 7, 2069-2089.
    95. Yoo K., Kim J-P., Lee J., Kim J.S., Lee D-K., Kim K., Kim J.Y., Kim B., Kim H., Kim W.M., Kim J.K., and Ko M.J., Completely Transparent Conducting Oxide-Free and Flexible Dye-Sensitized Solar Cells Fabricated on Plastic Substrates. ACS nano, 2015. 9, 3760–3771.
    96. Yella A., Lee H-W., Tsao H., Yi C., Chandiran A. K., Nazeeruddin M. K., Diau E. W., Yeh C-Y., Zakeeruddin S. and Grätzel M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334, 629-34.
    97. Liua Q., Wei Y., Shahid M.Z., Yao M., Xu B., Liu G., Jiang K. and Li C.,Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance. J. Power Sources, 2018. 380, 142-148.
    98. Kholmicheva N., Moroz P., Rijal U., Bastola E., Uprety P., Liyanage G., Razgoniaev A., D. Ostrowski A. and Zamkov M., Plasmonic Nanocrystal Solar Cells Utilizing Strongly Confined Radiation. ACS nano, 2014. 8. 12549–12559.
    99. Nahm C., Choi H., Kim J., Jung D-R., KimC., Moon J., Lee B. and Park B., The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl. Phys. Lett., 2011. 99, 253107-4.
    100. Fu Y., Ng S., Qiu G., Hung T., Wu C. L. and Lee C., A redox-controlled electrolyte for plasmonic enhanced dye-sensitized solar cells. Nanoscale, 2017. 9, 10940-10947.
    101. Sahu G., Gordon S.W. and Tarr M. A., Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells. RSC Advances, 2012. 2, 573-582.
    102. Wu J., Li Q., Fan L., Lan Z., Li P., Lin J. and Hao S., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2008. 181, 172-176.
    103. Jha P., Veerender P., Koiry S.P., SrideviC., Chauhan A.K., Muthe K.P., and Gadkari S.C., Growth of aligned polypyrrole acicular nanorods and their application as Pt-free semitransparent counter electrode in dye-sensitized solar cell. Polymers for Advanced Technologies, 2018. 29, 401-406.
    104. Abd-Ellah M., Moghimi N., Zhang L., Thomas J.P., McGillivray D., Srivastava S. and Leung K. T., Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale, 2016. 8, 1658-64.
    105. Wang Z., Tang Y., Li M., Zhu Y., Li M., Bai L., Luoshan M., Lei W., Zhao X., Plasmonic enhancement of the performance of dye-sensitized solar cells by incorporating TiO2 nanotubes decorated with Au nanoparticles. J. Alloys Compd., 2017. 714 89-95.
    106. Isogai A., Saito T. and Fukuzumi H., TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011. 3, 71-85.
    107. Wan C., Jiao Y. and Li J., Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A, 2017. 5, 3819-3831.
    108. Efa, M.T. and Imae T., Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J.Taiwan. Inst. Chem. Eng,, 2018. 92, 112-117.
    109. Alshehri N. A., Lewis A. R., Pleydell-Pearce C., G.G. Maffeis T., Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 2018. 22, 538-545.
    110. Krysmann M.J., Kelarakis A., Dallas P. and Giannelis E. P., Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc, 2012. 134, 747-50.
    111. Devadas B. and Imae T., Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustainable Chem. Eng., 2017. 6, 127-134.
    112. Chauhan I., Aggrawal S. and Mohanty P., ZnO nanowire-immobilized paper matrices for visible light-induced antibacterial activity against Escherichia coli. Environ. Sci.: Nano., 2015. 2, 273-279.
    113. Liu C-F., Ren J-L, Xu F., Liu J-J., Sun J-X. and Sun R-C., Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem, 2006. 54, 5742-8.
    114. Fu Y., Su Y-S. and Manthiram A., Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. J. Electrochem. Soc., 2012. 159, 1420-1424.
    115. Alshammari A., Bagabas A. and Assulami M., Photodegradation of rhodamine B over semiconductor supported gold nanoparticles: The effect of semiconductor support identity. Arabian J. Chem., 2014. 7.
    116. Bai, S.-N., Growth and properties of ZnO nanowires synthesized by a simple hydrothermal method. J Mater Sci: Mater Electron, 2012. 23, 398–402.
    117. Puvvada B., Kumar B. P, Konar S., Kalita H., Mandal M. and Pathak A., Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications. Sci Technol Adv Mater, 2012. 13, 045008-7.
    118. Prasannan A. and Toyoko I., One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind. Eng. Chem. Res., 2013. 52, 15673-15678.
    119. Neupane M. P., Lee S. J., Park I. S., Lee M. H., Bae T. S., Kuboki Y., Uo M. and Watari F., Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration. J. Nanopart. Res., 2010. 13, 491-498.
    120. Lu P. and Hsieh Y-L, Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym., 2010. 82, 329-336.
    121. Wang J-G., Wei B. and Kang F., Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors. RSC Adv., 2014. 4, 199-202.
    122. Suresh S., Investigation of the Optical and Dielectric Properties of the Urea L-malic Acid NLO Single Crystal. Am. Chem. Sci. J., 2013, 3, 325-337.
    123. Barman M. K., Mitra P., Bera R., Das S., Pramanik A. and Parta A., An efficient charge separation and photocurrent generation in the carbon dot-zinc oxide nanoparticle composite. Nanoscale, 2017. 9, 6791-6799.
    124. Li Y., Zhang B-P, Zhao J-X, Ge Z-H., Zhao X-K. and Zou L., ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl. Surf. Sci., 2013. 279, 367-373.
    125. Subramanian, V., Wolf E.E. and Kamat P.V., Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc, 2004. 126, 4943-50.
    126. Bora T., Kyaw H. H., Sarkar S., Pal S. K. and Dutta J., Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process. Beilstein J. Nanotechnol, 2011. 2, 681-90.
    127. Solaiyammal, T. and P. Murugakoothan, Green synthesis of Au and the impact of Au on the efficiency of TiO2 based dye sensitized solar cell. Mater. Sci. Energy Technologies, 2019. 2, 171-180.

    QR CODE