簡易檢索 / 詳目顯示

研究生: 賴侑成
You-Cheng Lai
論文名稱: 水溶性螢光共軛高分子作為具有氣體響應性的自組裝奈米粒子應用於生物成像
Water-soluble Fluorescent Conjugated Polymers as Self-assembled Nanoparticles with Gas-responsiveness for Biological Imaging
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 邱文英
Wen-Yen Chiu
謝永堂
Yeong-Tarng Shieh
張雍
Yung Chang
蔡協致
Hsieh-Chih Tsai
戴子安
Chi-An Dai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 168
中文關鍵詞: 三級胺基團生物影像氣體響應性水溶性共軛高分子聚噻吩
外文關鍵詞: tertiary amine functional group, biological imaging, gas-responsiveness, water-soluble conjugated polymers, polythiophene
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 6 2.1水溶性共軛高分子(Water-soluble conjugated polymer) 6 2.1.1共軛高分子概述 6 2.1.2水溶性共軛高分子概述及發展近況 8 2.1.3雙親性共軛共聚高分子 13 2.2水溶性聚噻吩(Water-soluble polythiophene) 16 2.2.1水溶性聚噻吩概述 16 2.2.2聚噻吩聚合方式 20 2.2.3噻吩聚合物奈米粒子形成方式 27 2.3刺激應答(Stimuli-Responsivenesss) 29 2.3.1刺激應答概述 29 2.3.2 CO2刺激響應的官能基團 32 2.4生物影像(Biological image) 36 2.4.1生物成像概述 36 2.4.2螢光成像發展 37 2.4.3水溶性共軛高分子生物成像應用 39 2.5文獻回顧總結 42 第三章 實驗材料與方法 43 3.1研究設計 43 3.2實驗材料 44 3.2.1實驗藥品 44 3.2.2實驗溶劑 47 3.2.3細胞實驗材料 49 3.2.4相關實驗材料 51 3.3實驗儀器與設備參數 52 3.3.1旋轉塗佈機(Spin Coaters) 52 3.3.2桌上型酸鹼度計(pH Meter) 52 3.3.3酵素免疫分析儀(ELISA Reader) 53 3.3.4元素分析儀(elementar vario EL cube) 53 3.3.5 CO2培養箱(CO2 incubators) 54 3.3.6冷凍離心機(Refrigerated Centrifuge) 55 3.3.7斜式旋轉濃縮機(Rotary Evaporation) 55 3.3.8振盪混合器(Vortex Mixer) 55 3.3.9光致螢光光譜儀(Photoluminescence,PL) 56 3.3.10熱重分析儀(Thermogravimetric analysis,TGA) 56 3.3.11紫外線光譜儀(UV/VIis spectrophotometer,UV/Vis) 57 3.3.12電灑游離質譜儀(Electrospray Ionization Mass Spectrometer) 58 3.3.13螢光顯微鏡(Fluorescence microscope) 59 3.3.14原子力顯微鏡(Atomic Force Microscpoic,AFM) 59 3.3.15奈米粒徑分析儀(Dynamic Light Scattering,DLS) 60 3.3.16差示掃描量熱儀(Differential scanning calorimetry,DSC) 61 3.3.17高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 61 3.3.18傅里葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR) 62 3.3.19液態核磁共振光譜(Nuclear Magnetic Resonance Spectrometer,NMR) 63 3.3.20基質輔助雷射脫附游離飛行時間式質譜儀(Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry,MALDI-TOF MS) 63 3.3.21電化學分析儀(Cyclic Voltammetry,CV) 64 3.3.22流式細胞儀(Flow Cytometers) 65 3.4實驗合成步驟 66 3.4.1合成單體前驅物Methyl thiophene-3-acetate 66 3.4.2合成單體N-[3-(Dimethylamino)propyl]-2-(2-thienyl)acetamide 68 3.4.3合成高分子poly[N-[3-(Dimethylamino)propyl]-2-(2-thienyl)acetamide] 69 3.5樣品製備 70 3.5.1高分子保存方式以及製備方法 70 3.6細胞生物性製備 71 3.6.1磷酸鹽緩衝生理鹽水(Phosphate buffered saline,PBS) 71 3.6.2胰蛋白酶(Trypsin - EDTA) 71 3.6.3細胞培養基(Dulbecco's Modified Eagle Medium,DMEM) 71 3.6.4細胞解凍培養 72 3.6.5細胞培養條件 72 3.6.6細胞生物毒性測試 73 3.6.7溶血試驗 74 3.6.8螢光顯微鏡製備 75 3.6.9製備1 % Fetal Bovine Serum(FBS)+ Phosphate buffered saline(PBS) 75 3.6.10流式細胞儀(Flow cytometer) 76 第四章 結果與討論 77 4.1 材料鑑定 77 4.1.1 M1單體透過傅里葉轉換紅外光譜(FTIR)材料鑑定 78 4.1.2 M1單體透過核磁共振儀(1H和13C NMR)材料鑑定 80 4.1.3 M1單體透過元素分析儀(EA)材料鑑定 82 4.1.4 M1單體透過質譜儀(LC MASS)材料鑑定 83 4.1.5 P1高分子透過核磁共振儀1H NMR材料鑑定 84 4.1.6 P1高分子透過基質輔助雷射脫附游離飛行時間式質譜儀(MALDI-TOF MS)材料鑑定 85 4.1.7 P1高分子透過熱重分析儀(TGA)材料鑑定 86 4.1.8 P1高分子透過熱差式分析儀(DSC)材料鑑定 88 4.2 材料性質分析 89 4.2.1高分子氣體響應前後之核磁共振儀1H NMR光譜圖 89 4.2.2高分子氣體響應前後之紫外線光譜以及光致螢光光譜 91 4.2.3高分子氣體響應前後之循環伏安計量(Cyclic voltammetry)分析 98 4.2.4高分子氣體響應後之螢光穩定度 103 4.2.5高分子氣體響應前後之動態光閃射儀測試 105 4.2.6高分子氣體響應前後之電子顯微鏡(SEM)、原子力顯微鏡(AFM)微結構之探討 107 4.2.7高分子氣體響應前後之可逆測試 111 4.2.8高分子加熱後之溫度響應測試 114 4.3生物影像分析 119 4.3.1高分子氣體響應前後之細胞毒性測試(Cytotoxicity test) 119 4.3.2高分子氣體響應前後之螢光顯微鏡觀察(Fluorescence microscope) 121 4.3.3高分子氣體響應前後之流式細胞儀測試(Flow cytometer) 131 4.3.4高分子氣體響應前後之溶血試驗(Hemolysis test) 134 4.3.5高分子氣體響應前後之活體內毒性測試(In vivo cytotoxicity test) 137 4.3.6高分子氣體響應前後之活體內生物影像(In vivo Biological image) 139 第五章 結論 142 第六章 未來展望 144 第七章 參考文獻 145

    1. Yuan, H.B., et al., Carbon Dioxide-Controlled Assembly of Water-Soluble Conjugated Polymers Catalyzed by Carbonic Anhydrase. Macromolecular Rapid Communications, 2017. 38(5): p. 7.
    2. Xu, L.Q., et al., CO2-triggered fluorescence "turn-on" response of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). Journal of Materials Chemistry A, 2013. 1(4): p. 1207-1212.
    3. Feng, L.H., et al., Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chemical Society Reviews, 2013. 42(16): p. 6620-6633.
    4. Heeger, A.J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture). Angewandte Chemie-International Edition, 2001. 40(14): p. 2591-2611.
    5. Burroughes, J.H., et al., LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS. Nature, 1990. 347(6293): p. 539-541.
    6. McQuade, D.T., A.E. Pullen, and T.M. Swager, Conjugated polymer-based chemical sensors. Chemical Reviews, 2000. 100(7): p. 2537-2574.
    7. Das, S., et al., Water-soluble ionic polythiophenes for biological and analytical applications. Polymer International, 2017. 66(5): p. 623-639.
    8. Kim, B.S., et al., Titration behaviors and spectral properties of hydrophobically modified water-soluble polythiophenes. European Polymer Journal, 2001. 37(12): p. 2499-2503.
    9. Zhu, C.L., et al., Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chemical Reviews, 2012. 112(8): p. 4687-4735.
    10. Liu, X.F., et al., Target-Induced Conjunction of Split Aptamer Fragments and Assembly with a Water-Soluble Conjugated Polymer for Improved Protein Detection. Acs Applied Materials & Interfaces, 2014. 6(5): p. 3406-3412.
    11. Xing, C.F., et al., Conjugated Polymer/Porphyrin Complexes for Efficient Energy Transfer and Improving Light-Activated Antibacterial Activity. Journal of the American Chemical Society, 2009. 131(36): p. 13117-13124.
    12. Wu, C., et al., Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging. Acs Nano, 2008. 2(11): p. 2415-2423.
    13. Xing, C.F., et al., Design Guidelines For Conjugated Polymers With Light-Activated Anticancer Activity. Advanced Functional Materials, 2011. 21(21): p. 4058-4067.
    14. Jenekhe, S.A. and X.L. Chen, Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998. 279(5358): p. 1903-1907.
    15. Wu, D.D., et al., Recent Advances in the Solution Self-Assembly of Amphiphilic "Rod-Coil" Copolymers. Journal of Polymer Science Part a-Polymer Chemistry, 2017. 55(9): p. 1459-1477.
    16. Blanazs, A., S.P. Armes, and A.J. Ryan, Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromolecular Rapid Communications, 2009. 30(4-5): p. 267-277.
    17. Du, J.Z. and R.K. O'Reilly, Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011. 40(5): p. 2402-2416.
    18. Mai, Y.Y. and A. Eisenberg, Self-assembly of block copolymers. Chemical Society Reviews, 2012. 41(18): p. 5969-5985.
    19. Zhou, Y.F., et al., Self-Assembly of Hyperbranched Polymers and Its Biomedical Applications. Advanced Materials, 2010. 22(41): p. 4567-4590.
    20. Mai, Y.Y., F. Zhang, and X.L. Feng, Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale, 2014. 6(1): p. 106-121.
    21. Marsitzky, D., M. Klapper, and K. Müllen, End-Functionalization of Poly (2, 7-fluorene): A Key Step toward Novel Luminescent Rod− Coil Block Copolymers. Macromolecules, 1999. 32(25): p. 8685-8688.
    22. Surin, M., et al., Microscopic Morphology of Polyfluorene–Poly (ethylene oxide) Block Copolymers: Influence of the Block Ratio. Advanced Functional Materials, 2004. 14(7): p. 708-715.
    23. Brochon, C., et al., Synthesis of poly (paraphenylene vinylene)—polystyrene‐based rod‐coil block copolymer by atom transfer radical polymerization: Toward a self‐organized lamellar semiconducting material. Journal of applied polymer science, 2008. 110(6): p. 3664-3670.
    24. Stalmach, U., et al., Synthesis of a Conjugated Macromolecular Initiator for Nitroxide‐Mediated Free Radical Polymerization. Angewandte Chemie International Edition, 2001. 40(2): p. 428-430.
    25. Richard, F., et al., Design of a Linear Poly (3‐hexylthiophene)/Fullerene‐Based Donor‐Acceptor Rod‐Coil Block Copolymer. Macromolecular Rapid Communications, 2008. 29(11): p. 885-891.
    26. Dai, C.-A., et al., Facile synthesis of well-defined block copolymers containing regioregular poly (3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. Journal of the American chemical society, 2007. 129(36): p. 11036-11038.
    27. Jenekhe, S.A. and X.L. Chen, Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999. 283(5400): p. 372-375.
    28. Liu, C.L., et al., Conjugated rod-coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Progress in Polymer Science, 2011. 36(5): p. 603-637.
    29. Le, A.P., et al., Synthesis and Optoelectronic Behavior of Conjugated Polymer Poly(3-hexylthiophene) Grafted on Multiwalled Carbon Nanotubes. Journal of Polymer Science Part B-Polymer Physics, 2011. 49(8): p. 581-590.
    30. Xiao, L.F., Y.M. Chen, and K. Zhang, Efficient Metal-Free "Grafting Onto" Method for Bottlebrush Polymers by Combining RAFT and Triazolinedione-Diene Click Reaction. Macromolecules, 2016. 49(12): p. 4452-4461.
    31. Wang, M., G.L. Silva, and B.A. Armitage, DNA-templated formation of a helical cyanine dye J-aggregate. Journal of the American Chemical Society, 2000. 122(41): p. 9977-9986.
    32. Jelley, E.E., Spectral absorption and fluorescence of dyes in the molecular state. Nature, 1936. 138(3502): p. 1009.
    33. Brooker, L., et al., Spatial configuration, light absorption, and sensitizing effects of cyanine dyes. The Journal of Photographic Science, 1953. 1(6): p. 173-183.
    34. Mishra, A., et al., Cyanines during the 1990s: a review. Chemical reviews, 2000. 100(6): p. 1973-2012.
    35. Carreon, A.C., et al., Cationic polythiophenes as responsive DNA-binding polymers. Polymer Chemistry, 2014. 5(2): p. 314-317.
    36. Ho, H.A. and M. Leclerc, New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. Journal of the American Chemical Society, 2003. 125(15): p. 4412-4413.
    37. McCullough, R.D., P.C. Ewbank, and R.S. Loewe, Self-assembly and disassembly of regioregular, water soluble polythiophenes: Chemoselective ionchromatic sensing in water. Journal of the American Chemical Society, 1997. 119(3): p. 633-634.
    38. Ewbank, P.C., et al., Regioregular poly(thiophene-3-alkanoic acid)s: water soluble conducting polymers suitable for chromatic chemosensing in solution and soild state. Tetrahedron, 2004. 60(49): p. 11269-11275.
    39. Huynh, T.P., et al., Functionalized polythiophenes: Recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Progress in Polymer Science, 2015. 47: p. 1-25.
    40. Ho, H.A. and M. Leclerc, Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society, 2004. 126(5): p. 1384-1387.
    41. Das, S., D.P. Chatterjee, and A.K. Nandi, Water-soluble dual responsive polythiophene-g-poly(methoxyethoxy ethyl methacrylate)-co-poly(N,N-diethylamino ethyl methacrylate) for different applications. Polymer International, 2014. 63(12): p. 2091-2097.
    42. Das, S., et al., Thermo and pH responsive water soluble polythiophene graft copolymer showing logic operation and nitroaromatic sensing. Rsc Advances, 2013. 3(38): p. 17540-17550.
    43. Fonseca, S.M., et al., Selective Fluorescence Quenching in Cationic Fluorene-Thiophene Diblock Copolymers for Ratiometric Sensing of Anions. Macromolecular Rapid Communications, 2013. 34(9): p. 717-722.
    44. Schmidt, M.M., et al., Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes. Macromolecular Chemistry and Physics, 2018. 219(2): p. 10.
    45. Nilsson, K.P.R. and O. Inganas, Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nature Materials, 2003. 2(6): p. 419-U10.
    46. Cheng, D.D., et al., Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chemical Communications, 2015. 51(40): p. 8544-8546.
    47. Yao, Z.Y., et al., Colorimetric and fluorescent detection of protamines with an anionic polythiophene derivative. Organic & Biomolecular Chemistry, 2013. 11(38): p. 6466-6469.
    48. Cao, B., et al., Integrated zwitterionic conjugated poly(carboxybetaine thiophene) as a new biomaterial platform. Chemical Science, 2015. 6(1): p. 782-788.
    49. Lee, K., L.K. Povlich, and J. Kim, Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst, 2010. 135(9): p. 2179-2189.
    50. Nilsson, K.P.R., et al., Conjugated polyelectrolytes - Conformation-sensitive optical probes for staining and characterization of amyloid deposits. Chembiochem, 2006. 7(7): p. 1096-1104.
    51. Nilsson, K.P.R., et al., Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer's disease using novel luminescent probes. Acs Chemical Biology, 2007. 2(8): p. 553-560.
    52. Hu, R., et al., ROS self-scavenging polythiophene materials for cell imaging. Polymer Chemistry, 2015. 6(48): p. 8244-8247.
    53. Matos, K. and J.A. Soderquist, Alkylboranes in the Suzuki-Miyaura coupling: Stereochemical and mechanistic studies. Journal of Organic Chemistry, 1998. 63(3): p. 461-470.
    54. Ozawa, F., A. Kubo, and T. Hayashi, GENERATION OF TERTIARY PHOSPHINE-COORDINATED PD(0) SPECIES FROM PD(OAC)2 IN THE CATALYTIC HECK REACTION. Chemistry Letters, 1992(11): p. 2177-2180.
    55. Chinchilla, R. and C. Najera, The sonogashira reaction: A booming methodology in synthetic organic chemistry. Chemical Reviews, 2007. 107(3): p. 874-922.
    56. Niemi, V.M., et al., POLYMERIZATION OF 3-ALKYLTHIOPHENES WITH FECL3. Polymer, 1992. 33(7): p. 1559-1562.
    57. Liu, B., et al., Shape-adaptable water-soluble conjugated polymers. Journal of the American Chemical Society, 2003. 125(44): p. 13306-13307.
    58. Feng, X.L., et al., A Convenient Preparation of Multi-Spectral Microparticles by Bacteria-Mediated Assemblies of Conjugated Polymer Nanoparticles for Cell Imaging and Barcoding. Advanced Materials, 2012. 24(5): p. 637-+.
    59. Moon, J.H., et al., Live-cell-permeable poly (p-phenylene ethynylene). Angewandte Chemie-International Edition, 2007. 46(43): p. 8223-8225.
    60. Wang, B., et al., Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells. Scientific Reports, 2012. 2.
    61. Wu, C.F., et al., Ultrabright and Bioorthogonal Labeling of Cellular Targets Using Semiconducting Polymer Dots and Click Chemistry. Angewandte Chemie-International Edition, 2010. 49(49): p. 9436-9440.
    62. Wu, C.F., et al., Design of Highly Emissive Polymer Dot Bioconjugates for In Vivo Tumor Targeting. Angewandte Chemie-International Edition, 2011. 50(15): p. 3430-3434.
    63. Howes, P., et al., Phospholipid Encapsulated Semiconducting Polymer Nanoparticles: Their Use in Cell Imaging and Protein Attachment. Journal of the American Chemical Society, 2010. 132(11): p. 3989-3996.
    64. Yang, G.M., et al., A Multifunctional Cationic Pentathiophene: Synthesis, Organelle-Selective Imaging, and Anticancer Activity. Advanced Functional Materials, 2012. 22(4): p. 736-743.
    65. Stuart, M.A.C., et al., Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010. 9(2): p. 101-113.
    66. Roggan, A., et al., Optical properties of circulating human blood in the wavelength range 400-2500 nm. Journal of biomedical optics, 1999. 4(1): p. 36-47.
    67. Iglesias, N., et al., Loading studies of the anticancer drug camptothecin into dual stimuli-sensitive nanoparticles. Stability scrutiny. International Journal of Pharmaceutics, 2018. 550(1-2): p. 429-438.
    68. Li, W.S., et al., Thieno 3,2-b thiophene-based conjugated copolymers for solution-processable neutral black electrochromism. Polymer Chemistry, 2018. 9(47): p. 5608-5616.
    69. Shi, Z.C., et al., Solvent-tuned dual emission of a helical poly 3,5-bis (hydroxymethyl) phenylacetylene connected with a pi-conjugated chromophore. Polymer Journal, 2018. 50(7): p. 533-537.
    70. Park, S.Y. and Y.H. Bae, Novel pH-sensitive polymers containing sulfonamide groups. Macromolecular Rapid Communications, 1999. 20(5): p. 269-273.
    71. Mosaiab, T., et al., Zwitterionic fluorescent nanoparticles prepared using BODIPY conjugated polysulfobetaines for cancer cell imaging. New Journal of Chemistry, 2013. 37(12): p. 3845-3848.
    72. Li, J.M., et al., Enzyme-Responsive Cell-Penetrating Peptide Conjugated Mesoporous Silica Quantum Dot Nanocarriers for Controlled Release of Nucleus-Targeted Drug Molecules and Real-Time Intracellular Fluorescence Imaging of Tumor Cells. Advanced Healthcare Materials, 2014. 3(8): p. 1230-1239.
    73. Da, C., et al., Design of CO2 -in-Water Foam Stabilized with Switchable Amine Surfactants at High Temperature in High-Salinity Brine and Effect of Oil. Energy & Fuels, 2018. 32(12): p. 12259-12267.
    74. Jessop, P.G., et al., A solvent having switchable hydrophilicity. Green Chemistry, 2010. 12(5): p. 809-814.
    75. Jessop, P.G., et al., Green chemistry - Reversible nonpolar-to-polar solvent. Nature, 2005. 436(7054): p. 1102-1102.
    76. Guo, S., et al., CO2-Responsive Emulsion Systems. Progress in Chemistry, 2017. 29(7): p. 695-705.
    77. Yang, Z.Q., et al., Recent advances of CO2-responsive materials in separations. Journal of Co2 Utilization, 2019. 30: p. 79-99.
    78. Lin, S.J. and P. Theato, CO2-Responsive Polymers. Macromolecular Rapid Communications, 2013. 34(14): p. 1118-1133.
    79. Yan, Q. and Y. Zhao, Block copolymer self-assembly controlled by the "green" gas stimulus of carbon dioxide. Chemical Communications, 2014. 50(79): p. 11631-11641.
    80. Han, D.H., et al., Two-Way CO2-Switchable Triblock Copolymer Hydrogels. Macromolecules, 2012. 45(18): p. 7440-7445.
    81. Yan, Q. and Y. Zhao, CO2-Stimulated Diversiform Deformations of Polymer Assemblies. Journal of the American Chemical Society, 2013. 135(44): p. 16300-16303.
    82. Yan, Q., et al., Breathing Polymersomes: CO2-Tuning Membrane Permeability for Size-Selective Release, Separation, and Reaction. Angewandte Chemie-International Edition, 2013. 52(19): p. 5070-5073.
    83. Fowler, C.I., et al., Emulsion Polymerization of Styrene and Methyl Methacrylate Using Cationic Switchable Surfactants. Macromolecules, 2011. 44(8): p. 2501-2509.
    84. Fowler, C.I., P.G. Jessop, and M.F. Cunningham, Aryl Amidine and Tertiary Amine Switchable Surfactants and Their Application in the Emulsion Polymerization of Methyl Methacrylate. Macromolecules, 2012. 45(7): p. 2955-2962.
    85. Weissleder, R. and M.J. Pittet, Imaging in the era of molecular oncology. Nature, 2008. 452(7187): p. 580-589.
    86. Cheon, J. and J.H. Lee, Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Accounts of Chemical Research, 2008. 41(12): p. 1630-1640.
    87. Xie, J., et al., Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Accounts of Chemical Research, 2011. 44(10): p. 883-892.
    88. Zhou, J., Z. Liu, and F.Y. Li, Upconversion nanophosphors for small-animal imaging. Chemical Society Reviews, 2012. 41(3): p. 1323-1349.
    89. Terai, T. and T. Nagano, Fluorescent probes for bioimaging applications. Current Opinion in Chemical Biology, 2008. 12(5): p. 515-521.
    90. Giepmans, B.N.G., et al., Review - The fluorescent toolbox for assessing protein location and function. Science, 2006. 312(5771): p. 217-224.
    91. Zhang, M., et al., A highly selective fluorescence turn-on sensor for Cysteine/Homocysteine and its application in bioimaging. Journal of the American Chemical Society, 2007. 129(34): p. 10322-+.
    92. Zhao, Q., C.H. Huang, and F.Y. Li, Phosphorescent heavy-metal complexes for bioimaging. Chemical Society Reviews, 2011. 40(5): p. 2508-2524.
    93. Michalet, X., et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005. 307(5709): p. 538-544.
    94. Grynkiewicz, G., M. Poenie, and R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of Biological Chemistry, 1985. 260(6): p. 3440-3450.
    95. Sanchez-Martin, R.M., et al., Microsphere-based real-time calcium sensing. Angewandte Chemie-International Edition, 2006. 45(33): p. 5472-5474.
    96. Evans, M.J. and B.F. Cravatt, Mechanism-based profiling of enzyme families. Chemical Reviews, 2006. 106(8): p. 3279-3301.
    97. George, S., M.R. Hamblin, and A. Kishen, Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochemical & Photobiological Sciences, 2009. 8(6): p. 788-795.
    98. Singh, A.K., B.S. Kasinath, and E.J. Lewis, INTERACTION OF POLYCATIONS WITH CELL-SURFACE NEGATIVE CHARGES OF EPITHELIAL-CELLS. Biochimica Et Biophysica Acta, 1992. 1120(3): p. 337-342.
    99. Lu, L.D., et al., Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte. Langmuir, 2005. 21(22): p. 10154-10159.
    100. Liu, L.B., et al., Microorganism-based assemblies of luminescent conjugated polyelectrolytes. Chemical Communications, 2008(45): p. 5999-6001.
    101. Li, K., et al., Polyhedral Oligomeric Silsesquioxanes-Containing Conjugated Polymer Loaded PLGA Nanoparticles with Trastuzumab (Herceptin) Functionalization for HER2-Positive Cancer Cell Detection. Advanced Functional Materials, 2011. 21(2): p. 287-294.
    102. Wu, C.F., et al., Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. Journal of the American Chemical Society, 2010. 132(43): p. 15410-15417.
    103. Kim, I.B., et al., Use of a folate-PPE conjugate to image cancer cells in vitro. Bioconjugate Chemistry, 2007. 18(3): p. 815-820.
    104. Pu, K.Y., et al., Fluorescent Single-Molecular Core-Shell Nanospheres of Hyperbranched Conjugated Polyelectrolyte for Live-Cell Imaging. Chemistry of Materials, 2009. 21(16): p. 3816-3822.
    105. McRae, R.L., et al., Molecular recognition based on low-affinity polyvalent interactions: Selective binding of a carboxylated polymer to fibronectin fibrils of live fibroblast cells. Journal of the American Chemical Society, 2008. 130(25): p. 7851-+.
    106. Min, G.G., et al., Electrochemistry of conductive polymers 44: A comparative study on electrochemically polymerized polythiophenes from thiophene, bithiophene, and terthiophene. Synthetic Metals, 2009. 159(19-20): p. 2108-2116.

    無法下載圖示 全文公開日期 2024/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE