簡易檢索 / 詳目顯示

研究生: 郭姿郁
ZI-YU KUO
論文名稱: 50Gb/s高速單模光纖訊號傳輸搭配混合式被動光網路設計
Design of Hybrid-PON with 50Gb/s High-Speed Signal Transmission Along Single-Mode Fiber
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
曾昭雄
周一鳴
黃凡修
楊淳良
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: 外部調變雷射被動光網路400-Gb/s光傳送接收模組
外文關鍵詞: EML, PON, 400-Gb/s optical transceiver
相關次數: 點閱:213下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在複合光被動網路系統架構中傳輸高速訊號的可行性與限制,此複合架構可同時包含分時多工、分波多工和分時分波多工三種被動光網路的運作模式。此架構主要優點是可對用戶端進行分級,可依用戶需求去做調整和分配。我們探討在不同運作模式下經20 km標準單模光纖傳輸,對用戶數及功率需求的配置。如利用放大器來補償經過各元件及傳輸的損耗,在架構上可實現TDM/TWDM傳輸25 Gb/s的NRZ,WDM可傳輸50 Gb/s的NRZ,且依目前市售元件規格,最多可提供TWDM和TDM 1024個用戶端且WDM具有15個高速用戶端。
    為使被動光網路具有更高速的傳輸品質,良好的光發射機尤其重要,在本論文中量測兩種光發射機分別為單顆封裝驅動晶片以及QSFP-DD模組,皆採用400GBASE-LR8標準,搭載28Gbaud/s的高速PAM-4訊號,於B2B傳輸光眼圖時,誤碼率達1.11x10-9,且TDECQ值低達1.26,經接收端補償效應後,誤碼率改善至2.47x10-10,並於單模光纖中傳輸20 km時經接收端補償後,誤碼率可達8.49x10-6,皆可達使用FEC前的誤碼率標準,因其具備高速及可長公里傳輸特性,將來勢必可和被動光網路應用作結合,提供更高的傳輸品質。


    We investigated here the feasibility and limitation of a Hybrid-PON system for transmitting 25-Gb/s and above data rates. The hybrid system structure includes three different modes of operation: Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), and Time and Wavelength Division Multiplexing (TWDM) Passive Optical Networks (PONs). The main advantage of this architecture is that the user terminal side can be easy graded, adjusted and allocated, according to the user requirements. The number of users and the required power for transmission over 20 km single-mode fiber (SMF) at different operation modes has been discussed. If the optical amplifiers is used to compensate the loss, the TDM/TWDM mode can be realized to transmit 25 Gb/s NRZ, while the WDM mode can transmit 50 Gb/s NRZ, and according to the current system specifications, TWDM and TDM can support 1024 users whereas the WDM can provide 15 high speed users.
    In order to verify the high-data-rate transmission, the quality of optical transmitters is especially important. In this work, we measured two the performance of Linear Quad EML Driver and an 8-channel QSFP-DD, transceiver which are based on the 400GBASE-LR8 standard for transmitting 28-Gbaud/s PAM-4 signals. The bit error rate is 1.11x10-9 for back-to-back (B2B) transmission, and the TDECQ value is as low as 1.26. With the equalization and compensation effect at the receiver, the bit error rate can be improved to 2.47x10-10. After transmitting through 20 km long SMF with receiver compensation, the bit error rate can reach 8.49×10-6. All of the above results can meet the bit error rate requirement of receivers with forward error correcting (FEC). With the high-speed and long-distance transmission characteristics, the receivers are feasible for applications in the hybrid PONs to improve overall transmission quality.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 X 表目錄 XIII 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 3 1.4 論文架構 7 第二章 被動光網路及調變和元件介紹 8 2.1 前言 8 2.2 被動光網路簡介 9 2.3 400 Gb/s乙太網路簡介 11 2.4 四階脈衝振幅調變(PAM-4)系統 12 2.4.1 四階脈衝振幅調變訊號簡介 12 2.4.2 不歸零編碼訊號與四階脈衝振幅調變訊號之比較 13 2.5 色散的影響 15 2.6 電致吸收調變雷射模組簡介 16 2.6.1 雷射外部調變器 16 2.6.2 熱敏電阻&致冷晶片 19 2.7 光接收模組簡介 20 2.7.1 光電二極體 20 2.7.2 轉阻放大器(Trans-impedance Amplifier, TIA) 22 2.8 28 Gbaud Linear Quad EML Driver簡介 23 2.9 QSFP-DD簡介 24 2.10 前向錯誤更正碼(FEC)介紹 25 第三章 Hybrid-PON系統架構與分析 27 3.1 前言 27 3.2 元件介紹及功率需求 27 3.2.1 多工器(Multiplexer) 27 3.2.2 分光器(Splitter) 28 3.2.3 波導光柵路由器(Waveguide Grating Router) 29 3.3 架構設計 31 3.3.1 TWDM 33 3.3.2 TDM 34 3.3.3 WDM 36 3.4 系統功率需求分析 36 第四章 Linear Quad EML Driver和QSFP-DD系統量測結果與分析 42 4.1 前言 42 4.2 Linear Quad EML Driver量測 44 4.2.1 量測架構 44 4.2.2 電接頭版本量測結果 45 4.2.3 TOSA版本量測結果 47 4.3 QSFP-DD量測 55 4.3.1 量測架構 55 4.3.2 系統量測元件 57 4.3.3 QSFP-DD量測結果 59 第五章 結論 69 5.1 成果 69 5.2 未來研究方向 70 參考文獻 71

    http://www.ieee802.org/3/
    許鳳鳴,「基於直調雷射長距離分時分波多工被動光網路系統的啁啾效應控制技術」,國立台灣科技大學碩士論文,2014
    D. P. Shea and J. E. Mitchell, “A 10-Gb/s 1024-Way-Spilt 100-km Long-Reach Optical-Access Network,” IEEE Journal of Lightwave Technology,
    Vol. 25, no. 3, pp. 685-693, 2007.
    E. F. Eslam, Student Member, IEEE, M. Chagnon, M. Sowailem, A. Samani, M. M. Osman, and D. V. Plant, “168-Gb/s Single Carrier PAM4 Transmission for Intra-Data Center Optical Interconnects,” IEEE Photonics Technology Letters Vol. 29, Issue. 3, Feb.1, 1 2017.
    U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W.D. Molzow, A. Sigmund, H.G. Bach and M. Moehrle, “1.3 μm Electroabsorption Modulated Lasers for PAM4/PAM8 single channel 100 Gb/s,” paper Th-B2-5 - 26th Int. Conf. on IPRM.
    Z. Hongguang, F. Shengmeng, M. Jiangwei, C. Wei, S. Xiaolu and Z. Li, “30km Downstream Transmission Using 4 x 25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3, 2014.
    M. C. Cheng, C. T. Tsai, Y. C. Chi, and G. R. Lin, “Direct QAM-OFDM Encoding of an L-band Master –to-Slave Injection-Locked WRC-FPLD Pair for 2820Gb/s DWDM-PON Transmission,” Journal of Lightwave Technology, Vol. 32, no. 17, pp. 2981-2988, 2014.
    A. Abbasi, C. Spatharakis, G. Kanakis, N. S. Andr´e, H. Louchet, A. Katumba, J. Verbist, H. Avramopoulos, P. Bienstman, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “High Speed Direct Modulation of a Heterogeneously Integrated InP/SOI DFB Laser,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOl. 34, NO. 8, 2016.
    Li Zeng, Xiaolu Song, Jiangwei Man, Wei Chen, and Wenjun Zhou, “PAM4 TRANSMISSIONFOR SHORT REACH OPTICAL INTERCONNECTION,” International Conference on Optical Communications and Networks(ICOCN), pp. 1-4, 2015.
    Nicklas Eiselt, Jinlong Wei, Helmut Griesser, Annika Dochhan, Michael H. Eiselt, Jörg-Peter Elbers, Juan José Vegas Olmos and Idelfonso Tafur Monroy, “Evaluation of Real-Time 8 × 56.25 Gb/s (400G) PAM-4 for Inter-Data Center Application Over 80 km of SSMF at 1550 nm,” Journal of Lightwave Technology, pp. 955-962, 2017.
    Hyoungsoo Kim, Youngsik Hur, Moonkyun Maeng, Franklin Bien, Soumya Chandramouli, Edward Gebara and Joy Laskar,” Novel Clock Recovery Scheme with Improved Jitter Tolerance for PAM4 Signaling,” International Workshop on System-on-Chip for Real-Time Applications(IWSOC), pp. 101-106, 2005.
    J. Zerbe , C. Werner , V. Stojanovic1 , F. Chen , J. Wei , G. Tsang , D. Kim , W. Stonecypher , A. Ho , T. Thrush , R. Kollipara , G-J. Yeh , M. Horowitz , K. Donnelly, ”Equalization and clock recovery for a 2.5-10Gb/s 2-PAM/4-PAM backplane transceiver cell,” International Solid-State Circuits Conference(ISSCC), pp. 80-479, 2003.
    Dan Sadot, G. Dorman, Albert Gorshtein, Eduard Sonkin and Or Vidal, “Single channel 112Gbit/sec PAM4 at 56Gbaud with digital signal processing for data centers applications,” Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3, 2015.
    宋媛媛,「利用頻譜整形之特性完成高速25-Gbit/s*4分時分波多工被動光網路系統」,國立台灣科技大學碩士論文,2015
    IEEE 802.3 ETHERNET WORKING GROUP. IEEE P802.3bs. Retrieved December 25, 2018, from http://www.ieee802.org/3/
    Chris Cole, “400Gb/s 2km & 10km duplex SMF PAM-4 PMD Baseline Specifications” Finisar, NTT Electronics, IEEE 802.3 Interim Meeting, 2015.
    A. Healey, Ch. Morgan, M. Shanbhag, “Beyond 25 Gbps: A Study of NRZ & Multi-Level Modulation in Alternative Backplane Architectures”, DesignCon, 2013.
    A. Healey, C. Morgan, “A Comparison of 25 Gbps NRZ & PAM-4 Modulation Used in Legacy & Premium Backplane Channels,” DesignCon, Santa Clara, CA, 2012.
    K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 4, no. 11, pp. 885-894, 2012.
    原榮,鄔文杰,陳積德,宋馭民,劉正瑜,光纖通訊系統-原理與應用,新文京開發出版股份有限公司,民國93年。
    吳奇璋,「分佈反饋式雷射與行波式電致吸收調變器積體化元件製作」,國立台灣科技大學碩士論文,2010
    JC. Palais, Fiber Optic Communication, "4" ^"th" ed Prentice-Hall, January 1998.
    https://www.gigalight.com/zh-TW/show-1142.html
    A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications,” IEEE Circuits Dev. Mag., Vol. 22, No. 6, pp. 79–86, Nov./Dec. 2006.
    K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gbps LH optical transmission systems,” in Proc. IEEE Custom Integr. Circuits Conf. pp. 279–282, 2003.
    D. A. Morero, “Forward error correction for next-generation high-speed optical networks,” ClariPhy Argentina S.A.
    http://www.anfiber.com/p/100GHz_16_Channel_DWDM.html
    http://www.gezhiphotonics.com/plc-splitter-module.html
    Stelios Pitris, George Dabos, Charoula Mitsolidou, Theoni Alexoudi, Peter De Heyn, Joris Van Campenhout, Ronald Broeke, George T. Kanellos and Nikos Pleros, “Silicon photonic 8 × 8 cyclic Arrayed Waveguide Grating Router for O-band on-chip communication,” Optics Espress, Vol. 26, No. 5, Mar. 2018.
    http://www.enablence.com/technologies/products/awg/nxn-awg-multiplexers-and-demultiplexers-router-module-aprte/
    http://www.ieee802.org/3/ca/public/meeting_archive/2017/09/liu_3ca_2a_0917.pdf
    王伶綺,「以單通道傳送25 Gb/s和56 Gb/s組成400 Gb/s單模光傳輸模組的高速電路板設計」,國立台灣科技大學碩士論文,2018
    賴其賢,「56Gb/s高速單模光纖訊號傳輸」,國立台灣科技大學碩士論文,2017
    http://ieee802.org/3/bs/comments/index.shtml
    Maxim Integrated, “Extinction Ratio and Power Penalty”, Application Note HFAN-2.2.0, 2001.
    Santiago Echeverri-Chac´on, Student Member, Johan Jacob Mohr, Juan Jos´e Vegas Olmos, Piers Dawe, Bjarke Vad Pedersen, Thorkild Franck and Steen Bak Christensen, “Transmitter and Dispersion Eye Closure Quaternary(TDECQ) and its sensitivity to impairments in PAM4 waveforms,” Journal of Lightwave Technology,2018 IEEE.
    https://medium.com/@fiberstoreorenda/overview-of-single-mode-fiber-types-7af03359527c

    QR CODE