簡易檢索 / 詳目顯示

研究生: 林政隆
Cheng-Lung Lin
論文名稱: 虛擬實境之地板上的充氣介面
TilePoP: Tile-type Pop-up Prop for Virtual Reality
指導教授: 姚智原
Chih-Yuan Yao
口試委員: 黃大源
Da-Yuan Huang
陳炳宇
Bing-Yu Chen
余能豪
Neng-Hao Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 44
中文關鍵詞: 形狀改變介面虛擬實境觸覺回饋實體互動空氣袋
外文關鍵詞: Shape-changing Interface, Virtual Reality, Haptic Feedback, Tangible Interaction, Airbag
相關次數: 點閱:411下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TilePoP,它是一種新型氣動介面部署成地磚的樣子,藉由充氣的方式可以動態形變成大型的代理物件來進行全身性的互動在虛擬世界裡。TilePoP 是由方塊形狀的空氣袋以二維陣列排列堆疊所組成。空氣袋經過特別的折疊結構設計,讓空氣袋充氣後可以變成代理物件,不需要用到的時候可以消氣回到原來地磚的樣子。TilePoP 可以提供全身性的觸覺回饋,甚至於承受人體的重量。因此,它允許新的互動可能實現在虛擬實境當中。
    本文將詳細介紹 TilePoP 的設計與實現,應用程式的展示,以及初步的使用者評估結果,來了解使用者對於 TilePoP 的使用者體驗。


    We present TilePoP, a new type of pneumatically-actuated interface deployed as floor tiles which dynamically pop up by inflating into large shapes constructing proxy objects for whole-body interactions in Virtual Reality. TilePoP consists of a 2D array of stacked cube-shaped airbags designed with specific folding structures, enabling each airbag to be inflated into a physical proxy and then deflated down back to its original tile shape when not in use. TilePoP is capable of providing haptic feedback for the whole body and can even support human body weight. Thus, it allows new interaction possibilities in VR. Herein, the design and implementation of TilePoP are described in detail along with demonstrations of its applications and the results of a preliminary user evaluation conducted to understand the users' experience with TilePoP.

    摘要 ...................................................................................................................................i Abstract ...........................................................................................................................ii Content ...........................................................................................................................iii List of Figures ..................................................................................................................v 1 Introduction ...................................................................................................................1 2 Related Work ................................................................................................................3 2.1 VR Haptic Feedback ..................................................................................................3 2.1.1 Hand and Fingertip ..................................................................................................3 2.1.2 Head, Limb, and Body .............................................................................................3 2.2 Haptic Shape Proxy ...................................................................................................4 2.3 Pneumatic Shape-changing Interfaces .....................................................................5 3 Whole-body Pop-Up Props Considerations .................................................................6 4 Designing TilePoP ........................................................................................................7 4.1 Tile Material ...............................................................................................................7 4.2 Tile Folding Structure ...............................................................................................8 4.3 Tile Arrangement ....................................................................................................10 5 System Implementation .............................................................................................12 5.1 Pneumatic Control ...................................................................................................12 5.2 Tracking & Display ..................................................................................................13 6 Interactions Using TilePoP ........................................................................................15 6.1 On-demand Shapes for the Whole Body ................................................................15 6.2 Interacting with Additional Props ..........................................................................15 6.3 Emulation of Material Properties ............................................................................16 7 Visual Integration Of TilePoP .....................................................................................18 7.1 Visual States of the Props .......................................................................................18 7.2 Compensating for the Transformation Time ...........................................................18 8 Demo Applications ....................................................................................................21 8.1 Jurassic Island Escape ............................................................................................21 8.2 Block World Builder ................................................................................................22 9 Preliminary User Evaluation .......................................................................................24 9.1 Participants .............................................................................................................24 9.2 Procedure ...............................................................................................................24 9.3 Results & Discussion ..............................................................................................25 10 Limitations & Future work ........................................................................................27 10.1 Speed ....................................................................................................................27 10.2 Shapes ..................................................................................................................27 10.3 Support .................................................................................................................28 11 Conclusion ................................................................................................................29

    [1] Minecraft, 2019.
    [2] Ahmed Al Maimani and Anne Roudaut. Frozen Suit: Designing a Changeable Stiff- ness Suit and Its Application to Haptic Games. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 2440–2448, New York, NY, USA, 2017. ACM.
    [3] Jason Alexander, Anne Roudaut, J‘ijrgen Steimle, Kasper Hornb‘e ̨k, Miguel Bruns Alonso, Sean Follmer, and Timothy Merritt. Grand Challenges in Shape- Changing Interface Research. In Proceedings of the 2018 CHI Conference on Hu- man Factors in Computing Systems, CHI ’18, pages 299:1–299:14, New York, NY, USA, 2018. ACM.
    [4] Bruno Araujo, Ricardo Jota, Varun Perumal, Jia Xian Yao, Karan Singh, and Daniel Wigdor. Snake Charmer: Physically Enabling Virtual Objects. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, pages 218–226, New York, NY, USA, 2016. ACM.
    [5] Hrvoje Benko, Christian Holz, Mike Sinclair, and Eyal Ofek. NormalTouch and TextureTouch: High-fidelity 3d Haptic Shape Rendering on Handheld Virtual Re- ality Controllers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pages 717–728, New York, NY, USA, 2016. ACM.
    [6] NicolasBouillotandMichaSeta.AScalableHapticFloordedicatedtolargeImmer- sive Spaces. Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA, Stanford University, USA, page 5, 2019.
    [7] Brent Edward Insko. Passive haptics significantly enhances virtual environments. PhD thesis, 2001.
    [8] Hong-Yu Chang, Wen-Jie Tseng, Chia-En Tsai, Hsin-Yu Chen, Roshan Lalintha Peiris, and Liwei Chan. FacePush: Introducing Normal Force on Face with Head- Mounted Displays. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 927–935, New York, NY, USA, 2018. ACM.
    [9] Lung-Pan Cheng, Li Chang, Sebastian Marwecki, and Patrick Baudisch. iTurk: Turning Passive Haptics into Active Haptics by Making Users Reconfigure Props in Virtual Reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 89:1–89:10, New York, NY, USA, 2018. ACM. event-place: Montreal QC, Canada.
    [10] Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven K‘u ̋hler, Patrick Schmidt, Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick Baudisch. TurkDeck: Physical Virtual Reality Based on People. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, pages 417–426, New York, NY, USA, 2015. ACM.
    [11] Inrak Choi, Heather Culbertson, Mark R. Miller, Alex Olwal, and Sean Follmer. Grabity: A Wearable Haptic Interface for Simulating Weight and Grasping in Virtual Reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 119–130, New York, NY, USA, 2017. ACM.
    [12] Inrak Choi and Sean Follmer. Wolverine: A Wearable Haptic Interface for Grasping in VR. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16 Adjunct, pages 117–119, New York, NY, USA, 2016. ACM.
    [13] Alexandra Delazio, Ken Nakagaki, Roberta L. Klatzky, Scott E. Hudson, Jill Fain Lehman, and Alanson P. Sample. Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 320:1–320:12, New York, NY, USA, 2018. ACM.
    [14] Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. inFORM: dynamic physical affordances and constraints through shape and object actuation. UIST ’13, pages 417–426. ACM Press, 2013.
    [15] Gibson James. The Theory of Affordances, 1977.
    [16] Z. M. Hammond, N. S. Usevitch, E. W. Hawkes, and S. Follmer. Pneumatic Reel Actuator: Design, modeling, and implementation. In 2017 IEEE International Con- ference on Robotics and Automation (ICRA), pages 626–633, May 2017.
    [17] Chris Harrison and Scott E. Hudson. Providing Dynamically Changeable Physical Buttons on a Visual Display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 299–308, New York, NY, USA, 2009. ACM.
    [18] Anuruddha Hettiarachchi and Daniel Wigdor. Annexing Reality: Enabling Oppor- tunistic Use of Everyday Objects as Tangible Proxies in Augmented Reality. pages 1957–1967. ACM Press, 2016.
    [19] Ronan Hinchet, Velko Vechev, Herbert Shea, and Otmar Hilliges. DextrES: Wear- able Haptic Feedback for Grasping in VR via a Thin Form-Factor Electrostatic Brake. In Proceedings of the 31st Annual ACM Symposium on User Interface Soft- ware and Technology, UIST ’18, pages 901–912, New York, NY, USA, 2018. ACM.
    [20] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. Passive Real- world Interface Props for Neurosurgical Visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, pages 452– 458, New York, NY, USA, 1994. ACM.
    [21] H. G. Hoffman. Physically touching virtual objects using tactile augmentation en- hances the realism of virtual environments. In Proceedings. IEEE 1998 Virtual Re- ality Annual International Symposium (Cat. No.98CB36180), pages 59–63, 1998.
    [22] David Holman and Roel Vertegaal. Organic user interfaces: designing computers in any way, shape, or form. Communications of the ACM, 51(6):48–55, 2008.
    [23] Hiroo Iwata, Hiroaki Yano, Hiroyuki Fukushima, and Haruo Noma. CirculaFloor: A Locomotion Interface Using Circulation of Movable Tiles. In Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, VR ’05, pages 223–230, Washing- ton, DC, USA, 2005. IEEE Computer Society.
    [24] Hiroo Iwata, Hiroaki Yano, and Naoto Ono. Volflex. In ACM SIGGRAPH 2005 Emerging Technologies, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.
    [25] Paul Jackson. Folding Techniques for Designers: From Sheet to Form. Laurence King Publishing, London, May 2011.
    [26] Seoktae Kim, Hyunjung Kim, Boram Lee, Tek-Jin Nam, and Woohun Lee. Inflat- able Mouse: Volume-adjustable Mouse with Air-pressure-sensitive Input and Haptic Feedback. In Proceedings of the SIGCHI Conference on Human Factors in Com- puting Systems, CHI ’08, pages 211–224, New York, NY, USA, 2008. ACM.
    [27] RobertW.Lindeman,YasuyukiYanagida,HaruoNoma,andKenichiHosaka.Wear- able vibrotactile systems for virtual contact and information display. Virtual Reality, 9(2):203–213, March 2006.
    [28] Jo-Yu Lo, Da-Yuan Huang, Chen-Kuo Sun, Chu-En Hou, and Bing-Yu Chen. RollingStone: Using Single Slip Taxel for Enhancing Active Finger Exploration with a Virtual Reality Controller. In Proceedings of the 31st Annual ACM Sympo- sium on User Interface Software and Technology, UIST ’18, pages 839–851, New York, NY, USA, 2018. ACM.
    [29] Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baud- isch. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In Proceedings of the 2017 CHI Conference on Hu- man Factors in Computing Systems, CHI ’17, pages 1471–1482, New York, NY, USA, 2017. ACM.
    [30] Pedro Lopes, Sijing You, Alexandra Ion, and Patrick Baudisch. Adding Force Feed- back to Mixed Reality Experiences and Games Using Electrical Muscle Stimulation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Sys- tems, CHI ’18, pages 446:1–446:13, New York, NY, USA, 2018. ACM.
    [31] Kok-Lim Low, Greg Welch, Anselmo Lastra, and Henry Fuchs. Life-sized Projector-based Dioramas. In Proceedings of the ACM Symposium on Virtual Real- ity Software and Technology, VRST ’01, pages 93–101, New York, NY, USA, 2001. ACM.
    [32] Martinez Ramses V., Fish Carina R., Chen Xin, and Whitesides George M. Elas- tomeric Origami: Programmable Paper‘A ̆‘RˇElastomer Composites as Pneumatic Actuators. Advanced Functional Materials, 22(7):1376–1384, February 2012.
    [33] W. A. McNeely. Robotic graphics: a new approach to force feedback for virtual reality. In Proceedings of IEEE Virtual Reality Annual International Symposium, pages 336–341, September 1993.
    [34] Kazuki Nagai, Soma Tanoue, Katsuhito Akahane, and Makoto Sato. Wearable 6- DoF Wrist Haptic Device "SPIDAR-W". In SIGGRAPH Asia 2015 Haptic Media And Contents Design, SA ’15, pages 19:1–19:2, New York, NY, USA, 2015. ACM. event-place: Kobe, Japan.
    [35] H. Noma, T. Sugihara, and T. Miyasato. Development of Ground Surface Sim- ulator for Tel-E-Merge system. In Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048), pages 217–224, March 2000.
    [36] Jifei Ou, M‘l’lina Skouras, Nikolaos Vlavianos, Felix Heibeck, Chin-Yi Cheng, Jan- nik Peters, and Hiroshi Ishii. aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design. UIST ’16, pages 121–132. ACM Press, 2016.
    [37] J. Pair, U. Neumann, D. Piepol, and B. Swartout. FlatWorld: combining Holly- wood set-design techniques with VR. IEEE Computer Graphics and Applications, 23(1):12–15, January 2003.
    [38] Harpreet Sareen, Udayan Umapathi, Patrick Shin, Yasuaki Kakehi, Jifei Ou, Hiroshi Ishii, and Pattie Maes. Printflatables: Printing Human-Scale, Functional and Dy- namic Inflatable Objects. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 3669–3680, New York, NY, USA, 2017. ACM.
    [39] DominikSchmidt,RobertKovacs,VikramMehta,UdayanUmapathi,SvenK‘u ̋hler, Lung-Pan Cheng, and Patrick Baudisch. Level-Ups: Motorized Stilts That Simulate Stair Steps in Virtual Reality. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’15, pages 359–362, New York, NY, USA, 2015. ACM.
    [40] Alexa F. Siu, Eric J. Gonzalez, Shenli Yuan, Jason B. Ginsberg, and Sean Follmer. shapeShift: 2d Spatial Manipulation and Self-Actuation of Tabletop Shape Displays for Tangible and Haptic Interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 291:1–291:13, New York, NY, USA, 2018. ACM.
    [41] Bukun Son and Jaeyoung Park. Haptic Feedback to the Palm and Fingers for Im- proved Tactile Perception of Large Objects. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 757–763, New York, NY, USA, 2018. ACM.
    [42] E.A.Suma,Z.Lipps,S.Finkelstein,D.M.Krum,andM.Bolas.ImpossibleSpaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Archi- tecture. IEEE Transactions on Visualization and Computer Graphics, 18(4):555– 564, April 2012.
    [43] Ryo Suzuki, Junichi Yamaoka, Daniel Leithinger, Tom Yeh, Mark D. Gross, Yoshi- hiro Kawahara, and Yasuaki Kakehi. Dynablock: Dynamic 3d Printing for Instant and Reconstructable Shape Formation. In The 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 99–111, New York, NY, USA, 2018. ACM.
    [44] Shan-Yuan Teng, Tzu-Sheng Kuo, Chi Wang, Chi-huan Chiang, Da-Yuan Huang, Liwei Chan, and Bing-Yu Chen. PuPoP: Pop-up Prop on Palm for Virtual Reality. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 5–17, New York, NY, USA, 2018. ACM.
    [45] Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. UIST ’13, pages 13–22. ACM Press, 2013.
    [46] Zirui Zhai, Yong Wang, and Hanqing Jiang. Origami-inspired, on-demand deploy- able and collapsible mechanical metamaterials with tunable stiffness. Proceedings of the National Academy of Sciences, 115(9):2032–2037, February 2018.
    [47] Yiwei Zhao, Lawrence H. Kim, Ye Wang, Mathieu Le Goc, and Sean Follmer. Robotic Assembly of Haptic Proxy Objects for Tangible Interaction and Virtual Re- ality. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, ISS ’17, pages 82–91, New York, NY, USA, 2017. ACM.

    無法下載圖示 全文公開日期 2025/01/13 (校內網路)
    全文公開日期 2025/01/13 (校外網路)
    全文公開日期 2025/01/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE