簡易檢索 / 詳目顯示

研究生: 林新澔
Xin-Hao Lin
論文名稱: LTE-A網路中大量機器類型通訊設備隨機存取導致通道壅塞的解決方法
Solution to Congestion Problem for Massive MTC Devices Random Access in LTE-A Network
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 黎碧煌
Bih-Hwang Lee
陳俊良
Jiann-Liang Chen
鍾添曜
Tein-Yaw Chung
吳傳嘉
Chwan-Chia Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 77
中文關鍵詞: 物聯網機器類型通訊隨機存取通道壅塞
外文關鍵詞: random access, machine-type communication, device-to-device communication, grouping
相關次數: 點閱:222下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線技術的發展,物聯網(Internet of thing; IoT)帶給人們更方便、更人性化的服務。形成物聯網的關鍵技術是機器類型通訊(machine-type communication; MTC),支援此技術的通訊設備擁有以下幾種特點;低功耗、低成本、低資料量傳輸、低移動性或不移動、機器與機器之間可以自主化進行資料傳輸而不需要人為控制,正是這些特點構成物聯網。
    為了使物聯網的應用得以實現,第三代合作夥伴(3rd generation partnership project)提出長期演進技術之機器類型通訊(long term evolution-machine-type communication; LTE-M)的新標準,定義機器對機器(machine-to-machine; M2M)通訊應用的規範。在未來物聯網的環境中,一個基地台的覆蓋範圍內佈署著大量的MTC裝置(MTC device; MTCD)以及用戶裝置(user equipment; UE),這些裝置透過相同的隨機存取程序(random access procedure; RAP)向基地台請求通道資源。然而用於隨機存取(random access; RA)的實體隨機存取通道(physical random access channel; PRACH)的資源是有限的,當大量的裝置在短時間內向基地台請求通道資源會造成通道壅塞,隨機存取的成功率下降且等待與基地台建立連線的時間變長。
    本論文針對通道壅塞的問題提出解決方案,透過分類分群的機制來降低同時發起隨機存取的裝置數量。首先會將所有的裝置進行分群,並且每一個群組會有一個協調者,協調者負責指派隨機存取機會(random access opportunity; RAO)給組員,使一次隨機存取機會中成功隨機存取的裝置數量最佳化,藉此解決PRACH壅塞的問題。模擬結果顯示,在大型智慧城市的環境下,當有大量裝置向基地台請求通道資源時,本論文提出的方法可以在更短的時間內解決通道壅塞。


    The concept of Internet of thing (IoT) implements in real life through machine-type communication (MTC). The features of MTC device (MTCD) are low power consumption, low complexity, small data transmission, rarely moving or motionless, machine-to-machine (M2M) communication without human intervention and so on, that are the key points in IoT.
    Third-generation partnership project (3GPP) has defined the specification of long-term evolution-MTC (LTE-M) to satisfy the demand of M2M applications.
    There is a massive number of MTCDs for IoT applications in the future, when a massive number of MTCDs send the connection request to the base station (BS) via random access procedure (RAP), physical random access channel (PRACH) will congest due to the resources of PRACH are limited, it causes the longer delay for access the network, even the services interrupted.
    This thesis focuses on solving PRACH congestion problem by grouping and classifying, the proposed mechanism separates MTCDs into several groups and the head of each group assigns random access opportunity (RAO) to its members. In this way controls the number of MTCDs initiating RA simultaneous, and solves PRACH congestion problem.
    The simulation results in different scenarios show that the proposed mechanism effectively solves PRACH congestion problem with shorter time or higher success rate.

    Chapter 1 Introduction Chapter 2 Background and Related Works Chapter 3 Classification Grouping Mechanism Chapter 4 Simulation and Result Chapter 5 Conclusion and Future Work

    [1] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 15)," TS 36.101 V15.4.0, Jan. 2019.
    [2] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 15)," TS 36.321 V15.2.0, Jul. 2018.
    [3] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 15)," TS 36.211 V15.5.0, May. 2019.
    [4] 3GPP, "Study on architecture enhancements to support Proximity-based Services (ProSe) (Release 12), " TR 23.703 V12.0.0, Feb. 2014.
    [5] H. Shariatmadari et al., "Machine-type communications: current status and future perspectives toward 5G systems," in IEEE Communications Magazine, vol. 53, no. 9, pp. 10-17, September 2015.
    [6] 3GPP, "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Service requirements for Machine-Type Communications (MTC); Stage 1 (Release 14), " TS 22.368 V14.0.1, Oct. 2017.
    [7] 3GPP, "Technical Specification Group Radio Access Network; Study on RAN Improvements for Machine-type Communications; (Release 11), " TR 37.868 V11.0.0, Sep. 2011.

    [8] 3GPP, "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Service accessibility (Release 15), " TS 22.011 V15.5.0, Oct. 2018.
    [9] A. D. Anthoni Kurnia and Y. Choi, "Random Access Channel Management for Handling Massive Numbers of Machine-to-Machine Communication Devices," 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 2018, pp. 1186-1190.
    [10] M. K. Giluka, T. Priyadarshi, S. Kumar, A. A. Franklin and B. R. Tamma, "An enhanced EAB algorithm to reduce RACH congestion due to IoT traffic in LTE-A networks," 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018, pp. 395-400.
    [11] W. T. Toor and H. Jin, "Combined Access Barring for Energy and Delay Constrained Machine Type Communications," 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 2018, pp. 130-132.
    [12] H. S. Jang, S. M. Kim, H. Park and D. K. Sung, "An Early Preamble Collision Detection Scheme Based on Tagged Preambles for Cellular M2M Random Access," in IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5974-5984, July 2017.
    [13] M. Polese, M. Centenaro, A. Zanella and M. Zorzi, "M2M massive access in LTE: RACH performance evaluation in a Smart City scenario," 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1-6.
    [14] R. Cheng, Z. Becvar, Y. Huang, G. Bianchi and R. Harwahyu, "Two-Phase Random Access Procedure for LTE-A Networks," in IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp. 2374-2387, April 2019.
    [15] E. Dahlman, S. Parkvall, J. Sköld, 4G, "LTE-Advanced Pro and The Road to 5G," Third Edition, 2016, pp. 461-486.
    [16] J. Schlienz, A. Roessler, "Device to Device Communication in LTE Whitepaper," Sep 2015.
    [17] T. Taleb and A. Kunz, "Machine type communications in 3GPP networks: potential, challenges, and solutions," in IEEE Communications Magazine, vol. 50, no. 3, pp. 178-184, March 2012.
    [18] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 15), " TS 36.300 V15.5.0, May. 2019.
    [19] N. S. Bezerra, M. Wang, C. Åhlund, M. Nordberg and O. Schelén, "RACH performance in massive machine-type communications access scenario," 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, 2018, pp. 1-6.
    [20] H. Kim, S. Lee and S. Lee, "Dynamic extended access barring for improved M2M communication in LTE-A networks," 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, 2017, pp. 2742-2747.

    QR CODE