簡易檢索 / 詳目顯示

研究生: 蔣昕哲
Hsin-Che Chiang
論文名稱: 台灣電力系統離岸風電提升併網容量規劃
Enhancing Grid-connected Capacity Planning of Offshore Wind Farms in the Taipower System
指導教授: 郭明哲
MING-TSE KUO
口試委員: 吳進忠
郭政謙
楊念哲
郭明哲
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 140
中文關鍵詞: 大型離岸風場穩態穩定度分析PSS/E新增輸電線
外文關鍵詞: large offshore wind farms, steady state stability analysis, Power System Simulator for Engineering (PSS/E), new added transmission lines
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應我國近年來在再生能源政策上之發展並推動能源轉型,減少火力與核能及其他傳統機組之發電量,以提高再生能源發電量。其中,離岸風電之建設也日漸成熟,成為各國再生能源的發展重點。
    本論文以PSS/E模擬軟體對全台具離岸風場潛力之地區作為模擬地點,並參考現今政策之規劃,挑選桃園、苗栗、彰化與雲林外海做為離岸風場設置地點,並設定其臨海之D/S變電所做為離岸風場的併接點,分別對區域內挑選之161kV匯流排以集中式、平均分散式以及依線路承載率之方式併網,先以不增設線路並採用N-1事故之準則下尋找系統之最大可併網容量,並與2025年台電之規劃目標做比較,模擬結果得知如不增設輸電線路會使區域線路雍塞,限制離岸風場的可併網量,因此無法達到政府2025年離岸風電設置5.5GW之目標。論文後半段即以彰化地區為模擬對象,探討以三種尋找增設輸電線路之方式找出輸電線路增設最適點,以解決區域線路雍塞之問題並提升併網量。最後模擬結果發現增設三條輸電線路可以達到政府規劃目標與改善線路雍塞之問題,最後比較三種尋找方式結果之效益與優劣,而此結果也可供離岸風場規劃併入台灣電力系統時,對系統建設及改善之參考。


    In order to cope with the development of the renewable energy policy in the Republic of China in recent years and promote energy transformation, the power generations of firepower and nuclear power and other traditional units are reduced to increase the amount of renewable energy generation. Among them, the construction of offshore wind power has gradually matured and become the development focus of renewable energy in various countries. This thesis uses the PSS/E simulation software to simulate the locations with the potential of the offshore wind farms. With reference to the current policy plan, The offshore of Taoyuan, Miaoli, Changhua and Yunlin is selected as locations for offshore wind farms. The D/S substations of the seas are set to be the joint of the offshore wind farms. The 161kV buses are selected in the areas are connected to the network in a centralized, average decentralized and the line carrying rate manners. First, the maximum grid-connectable capacity of the system without adding additional lines and adopting the N-1 accident criteria is found, and it compare with the planning goals of Taipower in 2025. The simulation results show that if the transmission lines are not added, the regional congestion of transmission lines will happen, and the amount of the offshore wind farms connected to the grid will be limited. Therefore, it is unable to meet the government's goal of setting 5.5GW of offshore wind farms in 2025. In the second half of the thesis, the Changhua area was used as a simulation object. The three ways to find additional transmission lines were found to find the optimum point for the transmission line to solve the problem of regional transmission congestion and increase the grid connection. The final simulation results show that the addition of three transmission lines can meet the government's planning goals and improve the congestion of the line. Finally, the benefits, advantages and disadvantages of the three search methods are compared. The results can also be used as a reference for system construction and improvement when offshore wind farm planning is incorporated into Taiwan's power system.

    Keywords: large offshore wind farms, steady state stability analysis, Power System Simulator for Engineering (PSS/E), new added transmission lines.

    台灣電力系統離岸風電提升併網容量規劃 I 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目標與方法 4 1.4 論文架構 5 第二章 風力發電與系統併網規範介紹 7 2.1 前言 7 2.2 風力發電概況 7 2.2.1 台灣風力發電現況與未來發展 7 2.2.2 全球風力發電現況與未來發展 10 2.3 風力發電機組之介紹 12 2.3.1 型式A 12 2.3.2 型式B 13 2.3.3 型式C 14 2.3.4 型式D 14 2.4 台灣再生能源併網規範介紹 15 第三章 模擬軟體與離岸風場之模擬介紹 19 3.1 前言 19 3.2 PSS/E軟體介紹 19 3.3 GEWT 4.0MW風力發電機模型介紹 22 3.4 離岸風場之建立與參數介紹 23 3.5 模擬地點設定 28 3.6 模擬流程介紹 30 第四章 大型離岸風場併入台電系統之最大併網量分析 32 4.1 前言 32 4.2 桃園地區大型離岸風場之最大併網量分析 32 4.2.1 桃園地區電網架構 32 4.2.2 桃園地區之瓶頸線路 34 4.2.3 風場以集中式併網併入桃園地區(榮成H) 36 4.2.4 風場以集中式併網併入桃園地區(白玉H) 38 4.2.5 風場以集中式併網併入桃園地區(塘尾H) 40 4.2.6 風場以集中式併網併入桃園地區(保生H) 42 4.2.7 風場以分散式併網併入桃園地區 44 4.2.8 離岸風場併入桃園地區之結果探討 46 4.3 苗栗地區大型離岸風場之最大併網量分析 48 4.3.1 苗栗地區電網架構 48 4.3.2 苗栗地區之瓶頸線路 50 4.3.3 風場以集中式併網併入苗栗地區(營盤H) 51 4.3.4 風場以集中式併網併入苗栗地區(山佳H) 53 4.3.5 風場以集中式併網併入苗栗地區(房裡H) 55 4.3.6 風場以分散式併網併入苗栗地區 57 4.3.7 離岸風場併入苗栗地區之結果探討 60 4.4 彰化地區大型離岸風場之最大併網量分析 62 4.4.1 彰化地區電網架構 62 4.4.2 彰化地區之瓶頸線路 65 4.4.3 風場以集中式併網併入彰化地區(線西H) 66 4.4.4 風場以集中式併網併入彰化地區(鹿東H) 68 4.4.5 風場以集中式併網併入彰化地區(鹿西H) 70 4.4.6 風場以集中式併網併入彰化地區(漢寶H) 72 4.4.7 風場以集中式併網併入彰化地區(草港H) 74 4.4.8 風場以集中式併網併入彰化地區(彰一甲H) 76 4.4.9 風場以集中式併網併入彰化地區(大城H) 78 4.4.10 風場以分散式併網併入彰化地區 79 4.4.11 風場以線路承載率之方式併入彰化地區 81 4.4.12 離岸風場併入彰化地區之結果探討 85 4.5 雲林地區大型離岸風場之最大併網量分析 88 4.5.1 雲林地區電網架構 88 4.5.2 雲林地區之瓶頸線路 90 4.5.3 風場以集中式併網併入雲林地區(台西H) 91 4.5.4 風場以集中式併網併入雲林地區(四湖H) 93 4.5.5 風場以分散式併網併入雲林地區 95 4.5.6 離岸風場併入雲林地區之結果探討 98 4.6 模擬結果與討論 99 第五章 以新增輸電線路之方式提升最大併網量分析 103 5.1 前言 103 5.2 以瓶頸線路尋找增設傳輸線路 103 5.2.1 以瓶頸線路搜尋合適傳輸線路之增設地點 103 5.2.2 彰化地區瓶頸線路發生N-1事故之影響 105 5.2.3 於壅塞線路增設輸電線後之最大併網量分析 105 5.2.4 新增第二條輸電線路後之最大併網量分析 108 5.2.5 新增線路後之離岸風場最大併網量探討 112 5.3 以電力潮流方向尋找增設傳輸線路 113 5.3.1 以潮流方向搜尋合適傳輸線路之增設地點 113 5.3.2 彰化地區既設電網之潮流分析 115 5.3.3 於發電-潮流方向增設傳輸線路 115 5.3.4 風場併入彰化地區後之最大併網量分析 117 5.3.5 新增線路後之離岸風場最大併網量探討 120 5.4 以瓶頸線路與潮流方向尋找增設傳輸線路 121 5.4.1 於瓶頸線路與潮流方向搜尋合適傳輸線路之增設地點 121 5.4.2 於雍塞線路與發電-潮流方向增設輸電線路 123 5.4.3 風場併入彰化地區後之最大併網量分析 123 5.4.4 新增線路後之離岸風場最大併網量探討 127 5.5 模擬結果與討論 129 第六章 結論與未來展望 132 6.1 結論 132 6.2 未來展望 135 參考文獻 137

    [1] 經濟部能源局,「風力發電4年推動計畫(核定本)」,民國106年08月。
    [2] 經濟部能源局,「《風力發電推動方案》重點推動方案(計畫)」,民國107年02月27日。
    [3] 陳自立,「應用PSS/E於台灣並皆大型離岸風場之相關研究」,碩士論文,台北科技大學,民國101年。
    [4] Ricardo Vidal-Albalate, Carlos Diaz Sanahuja, Enrique Belenguer, Ramon Blasco-Gimenez, “Estimation of fault currents in offshore wind power plants connected through HVdc links”, IEEE International Conference on Compatibility, Power Electronics and Power Engineering, pp. 34-39, 2017.
    [5] Pavithra Rajagopalan, “Challenges in Grid Integration of Offshore Wind in Tamil Nadu and Gujarat for Policy Makers and Transmission Planners”, 2017 7th International Conference on Power Systems (ICPS) College of Engineering Pune, 2017.
    [6] Duo Xu, Gang Mu, Hongbo Liu, Gangui Yan, “Assessment on large-scale offshore wind farm integration”, 2014 9th IEEE Conference on Industrial Electronics and Applications, pp. 556-559, 2014.
    [7] 詹鈞程,「離岸風場併入台電既有系統後最大併網容量評估」 ,碩士論文,國立台灣科技大學,民國106年。
    [8] 黃博儀,「非傳統配電網路壅塞改善策略研究」,碩士論文,國立中山大學,民國99年。
    [9] 柳冠宇,「考慮分散型電源之配電饋線電壓控制設備設置最佳成本效益研究」,碩士論文,元智大學,民國107年。
    [10] Li Wang, Yan-Fu Lin, Shun-Chin Ke, “Stability Analysis of an Offshore Wind Farm Connected to Taiwan Power System Using DIgSILENT”, IEEE OCEANS, pp. 1-5, 2014.
    [11] L. Wang, et al. "System-Impact Analysis of a Large-Scale Offshore Wind Farm Connected to Taiwan Power System", IEEE Industry Applications Society Annual Meeting, pp. 1-6, Dec.2013.
    [12] 周至如、洪為朋、李宗懋,「區域電網併接再生能源離岸風場之電力潮流及故障分析與保護協調檢討」,第39屆電力工程研討會,台灣台北市,2018.12.15~2018.12.16。
    [13] https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142,「經濟部能源局統計月報」,經濟部能源局,民國108年2月。
    [14] 經濟部能源局,「離岸風力發電規劃廠址容量分配作業要點」,民國107年1月18日。
    [15] https://www.moeaboe.gov.tw/ECW/populace/news/News.aspx?kind=1&menu_id=41&news_id=15003,「離岸風場遴選結果」,經濟部能源局,民國107年。
    [16] https://www.taipower.com.tw/TC/page.aspx?mid=204&cid=154&cchk=0a47a6ed-e663-447b-8c27-092472d6dc73,台灣電力公司,「再生能源發展概況」,民國108年。
    [17] Global Wind Energy Council, “Global Wind Statistic 2019”, 2019.
    [18] 康志堅,「2017年主要國家風力發電推動政策暨風電市場及廠業趨勢分析」,工業技術研究院,民國106年。
    [19] 潘建宏,「電力系統與離岸風場併接方法之研究」,碩士論文,台北科技大學,民國100年。
    [20] 戴忠穎,「風力發電機組併入台灣電力系統後低電壓穿越曲線之擬定與穩定度分析」,碩士論文,台灣科技大學,民國107年。
    [21] 台灣電力公司,「台灣電力股份有限公司再生能源發電系統並聯技術要點」,民國107年。
    [22] 陳在相、吳瑞南、張宏展,電力系統分析,東華書局股份有限公司,第195-263頁,民國104年。
    [23] Yuriy Kazachkov, Ross Altman, Jaypalan Senthil and Krishnat Patil, “PSS/E Wind Modeling Package for GE 1.5/1.6/2.5/2.75/4.0 MW Wind Turbines User Guide”, Aug. 2011.
    [24] 台灣電力公司,「台灣電力股份有限公司輸電系統規劃準則」,民102年04月01日。
    [25] https://data.gov.tw/dataset/16877,政府資料開放平台,台灣電力公司_變電所磁場資訊,民國107年。

    無法下載圖示 全文公開日期 2024/07/16 (校內網路)
    全文公開日期 2024/07/16 (校外網路)
    全文公開日期 2024/07/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE