簡易檢索 / 詳目顯示

研究生: 陳亮圻
Liang-Chi Chen
論文名稱: 苯基苯酚衍生碳材與銻披覆碳微管提昇鋰離子混成電容器
Upgrading the lithium ion hybrid capacitor with phenylphenol derived carbon and antimony coated CNT
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 陳崇賢
Chorng-Shyan Chern
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 鋰離子混成電容器無電鍍銻披覆碳微管苯基酚衍生碳
外文關鍵詞: lithium ion hybrid capacitor, electroless plating, antimony coated CNT, phenylphenol derived carbon
相關次數: 點閱:260下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鋰離子混合電容器,透過調節正負電極之間的不同質量比例來達到電量上的平衡,然而正電極儲存的方式為電雙層(EDL)相對於負極而言電量較為低。為了提高正極電容量,用對位-苯基苯酚高溫鍛燒製備中空多邊形結構的摻雜氮元素(KP-N-900),使活性碳表面積大於3000m 2 g -1。
      奈米碳管氧化,才能使銻元素鍍上於奈米碳管上,並使用無電鍍法沉積,Sb/CNT,而5.0A g-1時的容量接近220mAh g-1
      另一方面,KP-N-900的電容值在10 mV s-1下計算出其碳材內部擴散電容值為56.8F g-1而碳材表面電容值為55.7Fg-1。而在1 mV s-1下,其總電容值為168 F g-1。
      在KP-N-900與Sb /CNT質量比為2:1組成鋰離子混合式電容器其比能量和比功率之間表現出最好特性,與大多數單電極的特性完全不同。鋰離子混合式電容器為2:1的全電池在比功率為0.13 kW kg-1時比能量密度為90 Wh kg-1,而比功率為23.4 kW kg-1時比能量密度為4.5Wh kg-1。


      The storage capability of lithium ion hybrid capacitor can be upgraded through adjusting the mismatched rate qualities between positive and negative electrodes, since the positive electrode of electrostatic double layer (EDL) stores and releases electricity in a lesser quantity, yet much faster than the negative battery electrode. To increase the EDL capacity, a nitrogen-doped carbon (KP-N-900) of hollow-polygon structure is prepared with para-phenylphenol, achieving a surface area above 3000 m2g-1.
      CNT must be oxidized and electrodepositing metallic antimony on Multi-wall carbon nanotubes, Sb/CNT, evidenced by a capacity approximating 220 mAh g-1 at 5.0 A g-1.
      On the other hand, The capacitance of KP-N-900 displays a diffusive component 56.8 F g-1 exceeding its capacitive counterpart at 10 mV s-1. And its total capacitance increases to 168 F g-1 at 1 mV s-1
      Hence, the full cell, with a 2:1 mass ratio of KP-N-900 to Sb/CNT exhibits an effectual trade-off between its energy and power, quite different from the one-sided dependence on the carbon electrode of most hybrid capacitors. Specifically, this 2:1 full cell stores 90 Wh kg-1 at a power level 0.13 kW kg-1, and 4.5Wh kg-1. at power 23.4 kW kg-1

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 電化學電容器(Electrochemical capacitors, EC) 3 2.2 電雙層電容器(Electrochemical Double-layer Capacitors, EDLC) 4 2.3 擬電容器 (Pseudocapacitor) 6 2.4 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC) 7 2.4.1 鋰離子混合式電容器正極材料 8 2.4.2 鋰離子混合式電容器負極材料 9 2.5 電容器電解液 10 2.6 鋰離子電池(Lithium ion battery, LIB) 12 第三章 實驗方法與步驟 14 3.1 實驗藥品耗材與儀器設備 14 3.1.1 正、負極材料製備 14 3.1.2 電性量測 16 3.1.3 電化學測試儀器及設備 18 3.1.4 材料鑑定及分析之儀器 18 3.2 實驗流程圖 19 3.2.1 負極材料合成 19 3.2.2 正極材料合成 20 3.2.3 負極漿料製備 21 3.2.4 正極漿料製備 21 3.2.5 鋰離子混成電容器之電極製備 22 3.3 實驗方法 23 3.3.1 鋰離子混合式電容器負極材料合成 23 3.3.2 鋰離子混合式電容器正極材料合成 25 3.3.3 鋰離子混合式電容器負極漿料製備 26 3.3.4 鋰離子混合式電容器正極漿料製備 26 3.3.5 電流收集器清洗及準備工作 27 3.4 電極材料鑑定與分析 28 3.4.1 場發射掃瞄式電子顯微鏡 28 3.4.2 場發射槍穿透式電子顯微鏡(300KV) 28 3.4.3 表面積及孔徑分析 29 3.5 電化學特性分析 32 3.5.1 循環伏安法 32 3.5.2 恆電流充、放電量測 32 第四章 結果與討論 34 4.1 電極材料性質測試 34 4.1.1 負極材料Sb/CNT之形貌 34 4.1.2 正極材料特性之形貌 37 4.1.3 正極材料特性分析 40 4.2 單電極電化學儲電行為 43 4.2.1 預鋰化負極 43 4.2.2 負電極循環伏安分析 45 4.2.3 負電極不同電流密度下的電容量(rate capacity) 46 4.2.4 正極循環伏安法分析 48 4.2.5 正極不同電流密度下的電容量(Rate capacitance)與穩定性測試(Stability) 52 4.2.6 正極Capacitive與Diffusive比例分析 56 4.3 鋰離子混合式電容器性質測試 65 4.3.1 正負極重量比電容器理論電容量計算 65 4.3.2 放電特性分析 69 4.3.3 恆電流充放電及比電容分析 71 4.3.4 鋰離子混合電容器個別電位充、放電量測分析 74 第五章 結論 78 參考文獻 79

    1.Winter,D.M.,What Are Batteries, Fuel Cells, and Supercapacitors.pdf. 2004.
    2.Shukla, A.K., et al., Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica Acta, 2012. 84: p. 165-173.
    3.Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012. 41(2): p. 797-828.
    4.Sharma, P. and T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Conversion and Management, 2010. 51(12): p. 2901-2912.
    5.Elzbieta Frackowiak, F.o.B.g., Carbon materials for the electrochemical storage of energy in.pdf. 2001.
    6.Candelaria, S.L., et al., Nanostructured carbon for energy storage and conversion. Nano Energy, 2012. 1(2): p. 195-220.
    7.Kwang Sun Ryu, K.M.K., Symmetric redox supercapacitor with conducting polyaniline electrodes.pdf. 2002: p. 305-309.
    8.A. Clemente, S.P., E. Spila, B. Scrosati, Solid-state, polymer-based, redox capacitors.pdf. 1996: p. 273-277.
    9.Yu, G., et al.,Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013. 2(2): p. 213-234.
    10.Wei, L. and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012. 1(4): p. 552-565.
    11.Reddy, M.V., G.V. Subba Rao, and B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013. 113(7): p. 5364-457.
    12.Fray, A.R.K.a.D.J., Tin-based materials as advanced anode materials for lithium ion batteries A review.pdf. 2011: p. 14-24.
    13.Obrovac, M.N. and L. Christensen, Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochemical and Solid-State Letters, 2004. 7(5): p. A93.
    14.Lindsay, M.J., G.X. Wang, and H.K. Liu, Al-based anode materials for Li-ion batteries. Journal of Power Sources, 2003. 119-121: p. 84-87.
    15.Candace K. Chan, X.F.Z., and Yi Cui, High capacity Li ion battery anodes using Ge nanowires.pdf. 2007.
    16.Huggins, R.A., Lithium alloy negative electrodes.pdf. 1999: p. 13-19.
    17.Xue, M.-Z. and Z.-W. Fu, Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide. Electrochemistry Communications, 2006. 8(8): p. 1250-1256.
    18.Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580.
    19.Jiménez-Cordero, D., et al., Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes. Carbon, 2014. 71: p. 127-138.
    20.Torchała, K., K. Kierzek, and J. Machnikowski, Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochimica Acta, 2012. 86: p. 260-267.
    21.Demarconnay, L., E. Raymundo-Piñero, and F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution. Electrochemistry Communications, 2010. 12(10): p. 1275-1278.
    22.Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011. 196(22): p. 9743-9750.
    23.Chen, Z., et al., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochimica Acta, 2006. 51(16): p. 3322-3326.
    24.Aravindan, V., et al., Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev, 2014. 114(23): p. 11619-35.
    25.王千禎, 承載錫及硫化錫之奈米碳管電極作為鋰離子電容器之負極儲能特. 2018.
    26.陳之正, 承載氧化銻鍍層多壁奈米碳管作負極之鋰離子混合電容器. 2017.
    27.Atsuo SENDA, Y.T.T.N., Formation of Antimony Film by Electroless Plating.pdf. 1992. 43.
    28.江俊緯, 苯基苯酚前驅物製備未摻雜及摻雜活性碳及其電雙層電容儲電. 2018.
    29.He, Y. and W. Sun, Carbon-coated SbCu alloy nanoparticles for high performance lithium storage. Journal of Alloys and Compounds, 2018. 753: p. 371-377.
    30.Yan, W., et al., Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage. Chemistry of Materials, 2012. 24(12): p. 2382-2390.
    31.Li, H., et al., Constructing surface-driven lithium ion storage structure for high performance hybrid capacitor. Electrochimica Acta, 2019. 299: p. 163-172.
    32.Zhang, T., et al., High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon, 2015. 92: p. 106-118.
    33.Li, N.-W., et al., Graphene@hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors. Electrochimica Acta, 2018. 281: p. 459-465.
    34.Dsoke, S., et al., The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li 4 Ti 5 O 12. Journal of Power Sources, 2015. 282: p. 385-393.
    35.Hsieh, C.-L., et al., A composite electrode of tin dioxide and carbon nanotubes and its role as negative electrode in lithium ion hybrid capacitor. Electrochimica Acta, 2016. 209: p. 332-340.
    36.Yang, J.-J., et al., Voltage characteristics and capacitance balancing for Li4Ti5O12/activated carbon hybrid capacitors. Electrochimica Acta, 2012. 86: p. 277-281.

    QR CODE