簡易檢索 / 詳目顯示

研究生: 王昱鈞
Yu-Jun Wang
論文名稱: 雙相磷酸鈣的合成與抗菌
Synthesis biphasic calcium phosphate with antibacterial property
指導教授: 何明樺
Ming-Hua Ho
口試委員: 糜福龍
Fu-Long Mi
高震宇
Jhen-Yu Gao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 氫氧基磷灰石磷酸三鈣雙相磷酸鈣抗菌
外文關鍵詞: hydroxyapatite, tricalcium phosphate, biphasic calcium phosphate, antibacterial
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氧基磷灰石(hydroxyapatite,HA)是一種天然磷灰石礦物,化學結構類似於人體骨骼的無機相,因此它廣泛用作人體硬組織的替代物或填充劑,雖然HA具有良好的骨傳導性和生物相容性,但它沒有顯示出任何抗菌能力,此外HA的侵蝕或降解通常太慢而不能在體內被吸收和分解。針對HA植入後的細菌感染和降解問題,本研究開發了以銀離子取代部分鈣離子的HA /β- TCP (tricalcium phosphate,磷酸三鈣) 複合物,稱為BCP (biphasic calcium phosphate),意即通過煅燒磷酸氫二銨 (diammonium hydrogen phosphate)、硝酸鈣 (calcium nitrate)和硝酸銀來合成BCP,來自硝酸銀(silver nitrate)的銀離子取代了HA的一部分鈣離子,我們的目標是使銀離子賦予BCP抗菌性以降低細菌感染的風險,而BCP中HA/β-TCP比例的調整能使其降解速率更趨理想。
    ICP分析顯示BCP的5-20%鈣離子被銀離子取代,產生Ag-BCP,且銀含量隨著硝酸銀的量而增加,根據XRD圖譜計算BCP中HA /β- TCP的比例,表明pH值會影響主要產物的成分和HA / β-TCP的比率,當pH值高則主產物為HAP,而當pH值低的時候,產物中β-TCP比例增高。SEM圖像顯示PEG添加有效地減少了聚集,因此可獲得粒徑小且均勻的Ag-BCP顆粒,其顆粒直徑約為10~50um。BET和Zeta電位結果表明,Ag-BCP的比表面積和表面電荷隨pH值的增加而增加,意即通過調節本研究中的pH值,我們成功地控制了比表面積、粒徑、表面電性和HA / β-TCP比例。
    成骨細胞的培養結果指出與BCP相較,Ag-BCP沒有下降骨細胞的活性,以上結果顯示銀的修飾不會影響BCP的生物活性和生物相容性,另一方面,BCP中β-TCP的比例越高,細胞初期活性增加。此外Ag-BCP在大腸桿菌(Ecoli)上也有一定的抗菌能力,在pH8條件下具有最好的抗菌效果。根據以上結果,本研究成功開發了一種生物相容性佳、且具有骨傳導性和抗菌性的新型BCP,可作為良好的骨填充材料。


    Hydroxyapatite (Ca10(PO4)6(OH)2,HA) is a kind of natural apatite minerals that is similar to the inorganic phase of human bones. Therefore, it is widely used as a substitutes or fillers for human hard tissues. Although HA presents good osteoconductivity and biocompatibility, it does not show any antibacterial ability. Besides, the erosion or degradation of HA is usually too slow to be absorbed and decomposed in vivo. The degradation and infection after implantation are important issues when HA was applied, so a silver ion-replaced HA/TCP (tricalcium phosphate) composite were developed in this research. We synthesized BCP by calcining diammonium hydrogen phosphate, calcium nitrate and silver nitrate. Then, silver ions from silver nitrate replaced a part of calcium ions of hydroxyapatite.
    The analysis revealed that 5-20% calcium ions of BCP were replaced by silver, resulting in Ag-BCP. The silver content increased with the amount of silver nitrate, which was confirmed by ICP. The ratio of HA/TCP were calculated according to XRD spectra, indicating that there are different main products and HA/TCP ratios at different pH values. SEM images showed the PEG addition effectively reduced the aggregation, small and uniform Ag-BCP nanoparticles were thus obtained. BET and zeta potential results indicated that the specific surface areas and surface charges of Ag-HA/TCP increased with pH value. That is, the specific surface area, particle size, zeta potential and HA/TCP ratios were successfully controlled by adjusting pH value in this research.
    The culture of osteoblast cells revealed that the osteoconductivity of Ag-BCP was almost the same as that of BCP, supporting that the modification with silver would not affect the bioactivity and biocompatibility of BCP. Moreover, the antibacterial properties of Ag-BCP were significant. In conclusion, a biocompatible, osteoconductive and anti-bacterial novel HA/TCP was successfully developed in this research.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XV 專有名詞及縮寫 XVI 第一章 緒論 1 第二章 文獻回顧 3 2.1 骨組織簡介 3 2.1.1硬骨組織工程 4 2.1.2骨填充材料 4 2.1.3 發展困境與未來趨勢 7 2.2 磷酸鈣化合物 9 2.2.1 氫氧基磷灰石(HA) 11 2.2.2 磷酸三鈣(TCP) 11 2.2.3 雙相磷酸鈣(BCP) 12 2.3 金屬離子取代之BCP 14 2.3.1 變因控制 19 2.4骨材抗菌方法 25 第三章 實驗材料與方法 28 3.1 實驗藥品 28 3.2 實驗儀器 30 3.3 實驗步驟 32 3.3.1 磷酸鈣粉末製備 32 3.3.2 金屬銀取代 33 3.4 複合材料鑑定與性質檢測 33 3.4.1 X光繞色光譜儀分析原理(XRD) 33 3.4.2介達電位分析(Zeta Potential) 34 3.4.3比表面積分析(BET) 34 3.4.4鈣、銀離子釋放檢測(ICP) 35 3.5 體外細胞測試 35 3.5.1 實驗操作 35 3.5.2 細胞來源 37 3.5.3 細胞培養 38 3.5.4 細胞冷凍與保存 38 3.5.5 細胞解凍及培養 39 3.5.6 細胞播種 40 3.5.7 細胞計數 40 3.5.8 粒線體活性測試 42 3.6 抗菌檢測 45 3.6.1抑菌環寬測試法 45 3.6.2 CFU(Colony Forming Unit)法 45 第四章 實驗結果與討論 47 4.1組成與結晶度分析 47 4.2晶格參數與物性分析 64 4.3鈣、銀離子釋放分析(ICP) 75 4.3.1鈣離子釋放分析 75 4.3.2銀離子釋放分析 79 4.4 骨母細胞於材料上活性表現 85 4.5大腸桿菌抗菌表現 89

    1. Yasuda, H.Y., W. Fujitani, Effect of & beta TCP size on bone-like layer growth and adhesion of osteoblast-like cells in hydroxyapatite & beta TCP composites. Journal of Materials Transactions; 2006. 47: p. 2368-2372.
    2. Sandrine, G., J.M. Nedelec, E. Jallot, Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics. Journal of Chemistry Materials; 2011. 23: p. 3072-3085.
    3. Yoshida, K., N. Kondo, H. Kita, Substitution model of monovalent (Li, Na, and K), divalent (Mg), and trivalent (Al) metal ions for beta-tricalcium phosphate. Journal of American Ceramic Society; 2006. 89: p. 688-690.
    4. Suwalsky, M., B.Ungerer , L. Quevedo , F. Aguilar , Cu2+ ions interact with cell membranes. Journal of Materials Transactions; 2016. 89: p. 30-33.
    5. Venkatesan, J., and S. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering. Journal of Biomedical Nanotechnology; 2014. 10: p. 3124-3140.
    6. Zeeshan, S., S. Najeeb, Z. Khurshid , V. Verma , H. Rashid and M. Glogauer, Biodegradable materials for bone repair and tissue engineering applications. Journal of Materials Basel; 2015. 8: p. 5744-5794.
    7. Karen, J., L. Burg, S. Porter, F. James, Biomaterial Developments For Bone Tissue Engineering. Journal of Chemistry Materials; 2000. 21: p. 2349-2353.
    8. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Journal of Biomaterials; 2000. 21: p. 49-53.
    9. Shin, H., S. Jo, and A.G. Mikos, Biomimetic materials for tissue engineering. Journal of Biomaterials; 2003. 24: p.2531-2533.
    10. Arinzeh, T., J. Mcalary, G. Daculsi, A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem cell induced bone formation. Journal of Biomaterials; 2005. 26: p. 3631-8.
    11. Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering state of the art and future trends. Journal of Macromol Biosci; 2004. 4: p. 743-65.
    12. Kalita, S.J., A. Bhardwaj, and H.A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering. Journal of Materials Science and Engineering; 2007. 27: p. 441-449.
    13. Schenke, L., Two-photon microscopes and in vivo multiphoton tomographs-powerful diagnostic tools for tissue engineering and drug delivery. Journal of Drug Delivery; 2006. 58: p. 878-96.
    14. Marolt, D., M. Knezevic,V. Novakovic, Bone tissue engineering with human stem cells. Journal of Materials Basel; 2010. 4: p.749-751.
    15. Zhou, H., and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Journal of Acta Biomater; 2011. 7: p. 2769-81.
    16. Raynaud, E.C., D. Bernache , P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio. Journal of Biomaterials; 2002. 23 : p.1065-1072.
    17. Weiss, K.M., Investigating the structure, solubility, and antibacterial efficacy of silver and copper doped hydroxyapatite. Journal of Materials Science and Engineering; 2016. 7: p.23-28.
    18. Liu, D., and F. Tan, Effect of hydroxyapatite contents and theconcentration of EDC on the microstructural and biocompatibility of porous collagen/hydroxyapatite composite scaffold. Journal of Biomaterials; 2014. 20: p.1085–1088.
    19. Vukomanović, M., U. Repnik , T. Zavašnik, R. Kostanjšek, D. Škapin, Is nano-silver safe within bioactive hydroxyapatite composites. Journal of Biomaterials Science & Engineering; 2015. 1: p. 935-946.
    20. 何明樺.曾心瑜,以高分子輔助法製備雙相磷酸鈣並分析其骨傳導性. 國立臺灣科技大學化學工程系碩士論文2013. p.43-48.
    21. Gupta, S.P., and G. Garg, Curettage with cement augmentation of large bone defects in giant cell tumors with pathological fractures in lower-extremity long bones. Journal of Journal of Orthopaedics and Traumatology; 2016. 17: p. 239-47.
    22. Kim, K., The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Journal of Biomaterials; 2011. 32: p. 3750-3763.
    23. Ducheyne, P., Bioactive ceramics: the elect of surface reactivity on
    bone formation and bone cell function. Journal of Biomaterials; 1999. 20: p.2287-2303
    24. Boccaccini, A., R. Sintering, crystallisation and biodegradation behaviour of bioglass-derived glass–ceramics. Journal of Faraday Discussions; 2007. 136: p. 27.
    25. Lee, S., New culture medium concepts for cell transplantation. Journal of Transplantation Proceedings; 2013. 45: p. 3108-3112.
    26. Lu, J., The biodegradation mechanism of calcium phosphate biomaterials in bone. Journal of Biomed Mater Reviews; 2002. 63: p. 408-412.
    27. Greulich, C., Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Journal of Acta Biomaterialia; 2011. 7: p. 347-354.
    28. Ogino, H.I., Formation and characterization of anodic titanium
    oxide films containing Ca and P. Journal of Biomedical Materials; 1995. 29: p. 65-72
    29. Racquel, Z., P. Le, Properties of osteoconductive. Journal of Biomaterials; 2002. 395: p. 81-98
    30. Kazutaka, T.Y., T. Nakamura, Bone-bonding behavior of titanium alloy evaluated mechanically with detaching failure load. Journal of Biomedical Materials; 1995. 29: p. 157-163.
    31. Liu, B., and D.X. Lun, Current application of beta-tricalcium phosphate composites in orthopaedics. Journal of Orthopaedic Surgery; 2012. 4: p. 139-144.
    32. Le, B., and F. Stellacci, Antibacterial activity of silver nanoparticles: A surface science insight. Journal of Nano Today; 2015. 10: p. 339-354.
    33. 洪傅鍔, 謝妏君, 鹼性磷酸酶固定於幾丁聚醣微孔洞性薄膜對骨組織工程的影響. 國立台灣科技大學醫學工程研究所碩士學位論文2017. p. 24-35
    34. Ramay, H.R., and M. Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Journal of Biomaterials; 2004. 25: p. 5171-5180.
    35. Boanini, E., M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature . Journal of Acta Biomaterialia; 2010. 6: p. 1882-1894.
    36. Chou, Y.F., The effect of pH on the structural evolution of accelerated biomimetic apatite. Journal of Biomaterials; 2004. 25: p. 5323-5331.
    37. Raynaud, E.C., D. Bernache, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I Synthesis, characterisation and thermal stability of powders. Journal of Biomaterials Applications; 2002. 23: p. 1065-1072
    38. Narendran, P., A. Rajendran, M. Garhnayak, L. Garhnayak, J. Nivedhitha, Influence of pH on wet-synthesis of silver decorated hydroxyapatite nanopowder. Journal of Colloids Surface B Biointerfaces; 2018. 169: p. 143-150.
    39. Roelofs, A.J., K. Thompson, S. Gordon, M.J. Rogers, Molecular mechanisms of action of bisphosphonates: current status. Journal of Experimental & Clinical Cancer Research; 2006. 12: p. 6222-6230.
    40. Aviva, E., Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Journal of Advanced Drug Delivery Reviews; 2000. 42: p.175-195.
    41. Peter, P., S. Laïb, B. Bujoli, P. Pilet, P. Janvier, J. Guicheux, P. Zambelli, J. M. Bouler, O. Gauthier, Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Journal of Bone and Joint Surgery - Series A; 2005. 36: p. 52-60.
    42. Leventouri, T., Synthetic and biological hydroxyapatites: crystal structure questions. Journal of Biomaterials Applications; 2006. 27: p. 3339-3342.
    43. Epple, S., Biological and medical significance of calcium phosphates. Journal of Biomedical Materials; 2002. 41: p.3130-3146.
    44. Gibson, I.R., W. Bonfield, Chemical characterization of silicon-substituted hydroxyapatite. Journal of Biomedical Materials; 1998. 28: p.423-428
    45. Atsuo, I., and T. Tateishi, Sol–gel synthesis of Amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. Journal of Ceramic Science and Technology; 1998. 81: p. 1421-1428
    46. Matsumoto, N., K. Sato, K. Yoshida, K. Hashimoto, Y. Toda, Preparation and characterization of beta-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Journal of Acta Biomaterialia; 2009. 5: p. 3157-3164.
    47. Singh, R., A. Dhayalan , J. Ferreira, S. Kannan , Deposition, structure, physical and invitro characteristics of Ag-doped beta-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. Journal of Applied Materials & Interfaces; 2016. 62: p. 692-701.
    48. Gibson, I.R., I. Rehman, S. M. Best, W. Bonfield, Characterization of the transformation from calcium-defcient apatite to tricalciumphosphate. Journal of Materials Science; 2000. 12: p.799-804.
    49. Marchi, J., Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Journal of Materials Science; 2007. 42: p. 1040-1050.
    50. Kumta, N., C. Sfeir, D.H. Lee, D. Olton, D. Choi, Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Journal of Acta Biomaterialia; 2005. 1: p. 65-83.
    51. Bouler, J.M., P. Pilet, G. Daculsi, Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Journal of Biomaterials Applications; 1998. 19: p.133-139.
    52. Leng, Y., J. Zhang, A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Journal of Biomaterials Applications; 2005. 26: p. 6477-86.
    53. Yamada, S., J.M. Bouler, and G. Daculs, Osteoclastic resorption of calcium phosphate ceran&s with different hydroxyapatite-tricalcium phosphate ratios. Journal of Biomaterials Applications; 1997. 18: p.1037-1041
    54. Li, C., P. Liu, J. Peng, Shuping, Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Journal of Materials Characterization; 2013. 77: p. 23-31.
    55. Barbeck, M., R. Detsch, U. Deisinger, U. Hilbig, V. Rausch, R. Sader, G. Ziegler, C. J. Kirkpatrick, The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Journal of Biomedical Materials; 2012. 7: p. 1015-1025.
    56. Deudon, S.M., and S. Raher, Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Journal of Biomedical Materials; 2000. 24: p. 379-396.
    57. Louyeh, M.A., Sliver, Magnesium and zinc substituted Hydroxyapatite for orthopaedic applications. University of Birmingham for the Degree of Doctor of Philosophy; 2016. p. 134-136.
    58. Trebse, R., V. Pisot, and A. Trampuz, Treatment of infected retained implants. Knee Surgery, Sports Traumatology, Arthroscopy; 2005. 87: p. 249-256.
    59. Sajahan, N.A., and W.M. Ibrahim, Microwave irradiation of nanohydroxyapatite from chicken eggshells and duck eggshells. Mathematical Models and Methods in Applied Sciences; 2014. 14: p. 275-984.
    60. Boanini, E., M. Gazzano, and A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature. Journal of Acta Biomaterialia; 2010. 6: p. 1882-94.
    61. Lopes, J.H., Hierarchical structures of beta-TCP bioglass hybrid scaffolds prepared by gelcasting. Nature Reviews Materials; 2016. 62: p.10-23.
    62. Louyeh, M.A., Sliver, Magnesium and zinc substituted Hydroxyapatite for orthopaedic applications. University of Birmingham for the Degree of Doctor of Philosophy; 2016. p. 141-144.
    63. Rajion, Z.A., M. Farea, and D. Mohamad, Synthesis and characterization of biphasic calcium phosphate doped with zirconia. Journal of Materials Engineering and Performance; 2011. 5: p.34-42.
    65. Shih, P.S., and H.S. Ningsih, Investigations of antibacterial activity of silver, zinc, and silver-zinc doped beta-tricalcium phosphate (β-TCP) by spray pyrolysis. 國立台灣科技大學材料科學與工程學系碩士學位論文;2016: p.24-44.
    66. Zima, A., C. Czechowska, J. Siek, D. Olkowski, R. Noga, M. Lewandowska, M. Slosarczyk, How calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements. Journal of Materials Science; 2017. 28: p. 117.
    67. Legeros, R.Z., R. Rohanizadeh, D. Mijares, Biphasic calcium phosphate bioceramics:preparation, properties and applications. Journal of materials science; 2003. 14: p. 201-209.
    68. Koutsopoulos, S., Synthesis and characterization of hydroxyapatite
    crystals: A review study on the analytical methods. Department of Chemistry, University of Patras; 2002. 14: p. 598-617.
    69. Raynaud, S., D. Bernache, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio. Journal of materials science; 2002. 23: p.1065-1072.
    70. Ezra, A., G. Golomb, Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Journal of Advanced Drug Delivery Reviews; 2000. 42: p.175–195.
    71. Shimazaki, T., H. Miyamoto, Y. Ando, I. Noda, Y. Yonekura, S. Kawano, M. Miyazaki, In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. Journal of Nature Reviews Materials; 2010. 92: p. 386-389.
    72. Díaz, M., F. Barba, M. Miranda, F. Guitián, Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. Journal of Nanomaterials; 2009. 9: p. 1-6.
    73. 施威任,洪敏雄,王木琴, 碳酸鈣添加物對水解法合成奈米級氫
    氧基磷灰石之影響, 中國材料科學學會93年年會論文集, 2004 : p.24-68
    74. Fakharzadeh, A., Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Journal of Ceramics International; 2017. 43: p. 12588-12598.
    75. Gnanam, E.C., Synthesis and characterisation of biphasic calcium phosphate. Journal of Materials Engineering and Performance; 2011. 34: p.39-41.
    76. Murakami, A., Y. Tanimotol, Effect of varying HAP/TCP ratios in tape-cast biphasic calcium phosphate ceramics on responcce in vitro. Journal of Hard Tissue Biology; 2009. 18: p.71-76.
    77. Erdem, U., and M.B. Turkoz, Silver release of Ag (I) doped hydroxyapatite: In vitro study. Review of Scientific Instruments; 2019. 82: p. 961-971.
    78. Jones, J.R., Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science; 2006. 17: p. 989-996.
    79. Wang, X., and C. Wang, The antibacterial finish of cotton via sols containing quaternary ammonium salts. Journal of Composites Science and Technology; 2009. 50: p. 15-21.
    80. Song, R., Z. Zhong, and L. Lin, Evaluation of chitosan quaternary ammonium salt-modified resin denture base material. Journal of Biological Macromolecules; 2016. 85: p. 102-110.
    81. Jin, G.Q., H. Cao, H. Qian, S. Zhao, Y. Peng, Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Journal of Applied Biomaterials and Functional Materials; 2014. 35: p. 7699-7713.
    82. Deisinger, M., U. Detsch, R. Ziegler, Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. Journal of materials science; 2010. 21: p. 3119-3127.
    83. Xue, Y., H. Xiao, and Y. Zhang, Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Journal of Materials Science; 2015. 16: p. 3626-3655.
    84. Bellucci, D., Mg and Sr doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness. Journal of Materials Science Engineering C Mater Biol Appl; 2014. 42: p. 312-324.
    85. An, S., Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. Journal of Materials Science; 2012. 23: p. 789-795.
    86. Matsumoto ,T., J. Sasaki, H. Egusa, K. Y. Lee, T. Nakano, T. Sohmura, A. Nakahira, Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Journal of Tissue Engineering and Regenerative Medicine; 2010. 16: p. 2467-2473.
    87. Siddiqi, K.S., A. Husen, and R. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology; 2018. 16: p. 14.
    88. Amro, C.K., B. David, F. Heidi, Toxicity mechanisms in escherichia coli vary for silver nanoparticles and differ from ionic silver. Journal of Materials Engineering and Performance; 2014. 8: p. 374-386.
    89. Jiang, J., L. Li, K. Li, G. You, F. Zuo, Y. Li, Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. Journal of Colloid and Interface Science; 2016. 27: p. 1584-1598.
    90. Chem, J., Antimicrobial silver nanomaterials. Journal of Annual Review of Chemical and Biomolecular Engineering; 2018. 357: p. 1-17.
    91. Gibson, I.R., S.M. Best, and W. Bonfield, Chemical characterization of silicon-substituted hydroxyapatite. Journal of Colloid and Interface Science; 1998. 29: p.423-427.
    92. Oktar, F., N. Agathopoulos, S. Ozyegin, L. S. Gunduz, O. Demirkol, N. Bozkurt, Y. Salman, Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. Journal of Materials Science; 2007. 18: p. 2137-2143.
    93. Radovanović, R., Ž. Jokić, B. Veljović, D. Dimitrijević, S. Kojić, V. Petrović, R. Janaćković , Antimicrobial activity and biocompatibility of Ag+ and Cu2+doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+ and Cu2+doped hydroxyapatite. Journal of Materials Science Applied Surface Science; 2014. 307: p. 513-519.
    94. Sader, M.S., R.Z. Legeros, and G.A. Soares, Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. Journal of Materials Science; 2009. 20: p. 521-527.
    95. Atsuo, I., K. Hirosh, N. Ichinose, T. Tateishi, Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. Journal of School of Science and Engineering; 1999. 1: p.179-182.
    96. Fan, Z., A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Journal of Applied Biomaterials and Functional Materials; 2014. 24: p. 3933-3943.
    97. Thian, E., S. Konishi, T. Kawanobe, Y. Lim, P.N. Choong, C. Ho, B. Aizawa, Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. Journal of Materials Science; 2013. 24: p. 437-445.
    98. Palza, H., Antimicrobial polymers with metal nanoparticles. Journal of Materials Science; 2015. 16: p. 99-116.
    99. Fielding, G., A. Roy, M. Bandyopadhyay, A. Bose, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Journal of Materials Science; 2012. 8: p. 44-52.
    100. 蔡佑星, 金玉洁, 王幸苹, LDPE/ nano-Ag 複合膜的抗菌性. 包裝工程期刊; 2010. 31: p. 54 - 56.
    101. Jin, G., H. Qin, H. Qian, S. Zhao, Y. Peng, X. Zhang, X. Liu, X. Chu, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Journal of Acta Biomaterialia; 2012. 8: p.904-915.
    102. Oblak, E., Antibacterial activity of gemini quaternary ammonium salts. Journal of Acta Biomaterialia; 2014. 350: p. 190-198.
    103. Liu, Y.X., J. Cui, Y. Liu, L. Li, Synthesis, Surface properties, and antibacterial activity of quaternary ammonium salts containing epoxide group. Journal of Applied Surface Science; 2014. 35: p. 1460-1467.
    104. Rajendran, J., A. Barik, R. Natarajan, D. Kiran, M. S. Pattanayak, K. Deepak, Synthesis, phase stability of hydroxyapatite-silver composite with antimicrobial activity and cytocompatability. Journal of Ceramics International; 2015. 40: p. 10831-10838.
    105. Ishikawa, K., S. Radin, Determination of the Ca/P ratio in calcium- deficient hydroxyapatite using X-ray diffraction analysis. Journal of Materials Science; 1993. 4 : p. 105-168.
    106. Mroczkowska, M., J. Nowinski, L. Zukowska, G.Z. Mroczkowska, A. Garbarczyk, J.E. Wasiucionek, M. Gierlotka, Micro Raman, FT-IR/PAS, XRD and SEM studies on glassy and partly crystalline silver phosphate ionic conductors. Journal of Power Sources; 2007. 173: p. 729-733.
    107. Costescu, A., C. Ciobanu, S. Iconaru, S.L. Ghita, R.V. Chifiriuc, C.M. Marutescu, L.G. Predoi, Characterization, and antimicrobial activity, evaluation of low silver concentrations in silver-doped hydroxyapatite nanoparticles. Journal of Nanomaterials; 2013. 13: p. 1-9.
    108. Rangavittal, N., Structural study and stability of hydroxyapatite and-tricalcium phosphate: two important bioceramics. Journal of Materials Science; 2000. 4: p. 661-667.
    109. Loca, A., D. Reinis, A. Kodols, M. Berzina, Impact of sintering temperature on the phase composition and antibacterial properties of silver-doped hydroxyapatite. Journal of materials science; 2013. 85: p. 453-462.
    110. Mobasherpour, I., M. Heshajin, S. Kazemzadeh, A. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds; 2007. 430: p. 330-333.
    111. Louyeh, M.A., Sliver, Magnesium and zinc substituted Hydroxyapatite for orthopaedic applications. University of Birmingham for the Degree of Doctor of Philosophy; 2016. p. 168-172.
    112. Xidaki, D., P. Diomatari, D. Kaminari, A. Tsalavoutas, E. Alexiou, P. Psycharis, V. Tsilibary, E. C. Silvestros, S. Sagnou, Synthesis of hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: loading, release and in vitro studies. Journal of Materials Basel; 2018. 11: p. 157-168.
    113. Schneider, O., D. Loher, S. Brunner, J. Schmidlin, P. Stark, J. Wendelin, Flexible, silver containing nanocomposites for the repair of bone defects: antimicrobial effect against E. coli infection and comparison to tetracycline containing scaffolds. Journal of Materials Chemistry B; 2008. 18: p. 2679.
    114. Nilen, R.W., and P.W. Richter, The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. Journal of Applied Biomaterials and Functional Materials; 2007. 19: p. 1693-1702.
    115. Dubnika, A., and V. Zalite, Preparation and characterization of porous Ag doped hydroxyapatite bioceramic scaffolds. Journal of Ceramics International; 2014. 40: p. 9923-9930.
    116. Randin, S.R., Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability. Journal of Acta Biomaterialia; 2012. 8: p. 1401–1421.
    117. 蔣飛, 王德平, 影響磷灰石微球藥物緩釋效果的若干因素分析. 磷酸鹽學報; 2013.10: p. 1348-1351.
    118. Lopes, M.A., J. D. Santos, Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites. Journal of Materials Science; 1998. 17: p.370-373.
    119. Kocourek, M., T. Jurek, K. Remsa, J. Mikšovský, J. Weiserová, J. Luxbacher, Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method. Journal of Applied Physics A: Materials Science and Processing; 2010. 101: p. 615-620.
    120. Dorozhkin, S.V., Biphasic, triphasic and multiphasic calcium orthophosphates. Journal of Acta Biomaterialia; 2012. 8: p. 963-977.
    121. Fröls, M., S. Hauf, U. Sethmann, I. Schultheiss, S. Pfeifer, F. Kleebe, Combined hydrothermal conversion and vapor transport sintering of Ag-modified calcium phosphate scaffolds. Journal of the American Ceramic Society; 2012. 10: p.412-419
    122. Loher, S., O. Schneider, D. Maienfisch, T. Bokorny, S. Stark, Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. Journal of the American Ceramic Society; 2008. 4: p. 824-832.
    123. Okada, M.T., Roles of magnesium and calcium ion in cell to substrate adhesion. Journal of Pigment Cell and Melanoma Research; 1972. 74: p. 51-60.

    無法下載圖示 全文公開日期 2024/09/02 (校內網路)
    全文公開日期 2024/09/02 (校外網路)
    全文公開日期 2024/09/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE