簡易檢索 / 詳目顯示

研究生: 吳敬祐
Jing-You Wu
論文名稱: 二鈣鐵載氧體於移動床化學迴路程序部分氧化甲烷與RDF之評估
Chemical Looping Partial Oxidation of Methane and RDF with Di-Calcium Ferrite Oxygen Carriers in a Moving Bed Reactor
指導教授: 顧洋
Young Ku
李豪業
Hao-Yeh Lee
口試委員: 顧洋
Young Ku
蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
李豪業
Hao-Yeh Lee
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 169
中文關鍵詞: 化學迴路部分氧化程序二鈣鐵載氧體甲烷廢棄物衍生燃料移動床反應器
外文關鍵詞: Chemical looping partial oxidation, Di-calcium ferrite, Methane, Refuse-derived fuel (RDF), Moving bed reactor
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴路部分氧化程序相較傳統的氣化程序顯示出一些優勢,不但能避免燃料的過度氧化成二氧化碳與蒸氣,並能產出高質量的合成氣當作化學品工業的原料物。本研究主要目的在於製備出二鈣鐵載氧體,並運用於同向流移動床反應器中分別與甲烷和RDF 進行化學迴路部分氧化之評估。
    二鈣鐵載氧體的組成鈣鐵莫爾比為50:50,且於1150℃下進行鍛燒,此載氧體展現出優異的合成氣選擇性、循環再生性、破碎強度,並具有較低的磨耗。DCaF-1150載氧體的還原機制在合成氣氛下進行檢測,實驗結果顯示:二鈣鐵載氧體會直接被還原成氧化鈣與金屬鐵,不需經過氧化鐵相態,且無其他鈣鐵相態生成。此外DCaF-1150載氧體的還原動力式也分別於氫氣與一氧化碳氣氛下進行測試,氫氣氣氛下的還原活化能為84.30 kJ/mol,另一方面,一氧化碳氣氛下的還原活化能為69.22 kJ/mol。
    於最佳操作參數下,甲烷部分氧化使用蒸氣當作氣化劑的實驗顯示碳轉化率約為81.42%,合成氣濃度約為86.39 mol.%。甲烷部分氧化使用二氧化碳當作氣化劑的實驗顯示碳轉化率約為81.63%,合成氣濃度約為84.20 mol.%。
    於最佳操作參數下,RDF部分氧化使用蒸氣當作氣化劑的實驗顯示碳轉化率約為59.56%,合成氣濃度約為85.84 mol.%。RDF部分氧化使用二氧化碳當作氣化劑的實驗顯示碳轉化率約為68.20%,合成氣濃度約為82.11 mol.%。
    本研究成功製備出二鈣鐵載氧體,並運用於同向流移動床反應器中進行化學迴路部分氧化,研究結果指出鈣鐵系列當作載氧體具有較佳的潛力運用於合成氣的產出,可以符合不同化學工業製程上之需求。


    Chemical looping partial oxidation process demonstrates better advantages than conventional gasification process, which can not only avoid completely oxidizing fuel into CO2 and H2O, but also supply high quality of syngas for feedstock of chemicals industrial. In this study, di-calcium ferrite oxygen carriers are developed to conduct the investigation on chemical looping partial oxidation of methane and RDF.
    Di-calcium ferrite (DCaF) oxygen carriers are prepared with iron/calcium mole ratio of 50/50. The oxygen carriers calcined at 1150℃ exhibits good syngas selectivity, recyclability, crush strength and lower attrition. The reduction mechanism of DCaF-1150 is carried out under syngas atmosphere, the results indicate that Ca2Fe2O5 is directly reduced into metallic iron and CaO, without passing through any iron oxides and no other crystalline phase of calcium ferrite formed. The reduction kinetics analysis is individually discussed under hydrogen or carbon monoxide atmosphere, the apparent activation energy of reduction under H2 atmosphere was 84.30 kJ/mol; on the other hand, the apparent activation energy of reduction under CO atmosphere was 69.22 kJ/mol.
    Under optimal operation condition, the experiment of methane partial oxidation using steam as gasification agent shows the carbon conversion is approximately 81.42%, syngas concentration is approximately 86.39 mol.%. The experiment of methane partial oxidation using CO2 as gasification agent shows the carbon conversion is approximately 81.63%, syngas concentration is approximately 84.20 mol.%.
    Under optimal operation condition, the experiment of RDF partial oxidation using steam as gasification agent shows the carbon conversion is approximately 59.56%, syngas concentration is approximately 85.84 mol.%. The experiment of RDF partial oxidation using CO2 as gasification agent shows the carbon conversion is approximately 68.20%, syngas concentration is approximately 82.11 mol.%.
    The di-calcium ferrite oxygen carriers are successful prepared for chemical looping partial oxidation in a co-current moving bed reactor. The results indicate that calcium ferrite oxygen carriers demonstrate potential applications on syngas production for different processes of chemical industrial.

    中文摘要 I Abstract III Acknowledgement V Table of Contents VII List of Figures XI List of Tables XV List of Symbols XVII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and Scope 3 Chapter 2 Literature and Review 5 2.1 Chemical Looping Processes 5 2.1.1 Chemical Looping Combustion 5 2.1.2 Chemical Looping Partial Oxidation 11 2.1.3 Biomass Applications by using Chemical Looping Processes 15 2.2 Oxygen Carriers for Chemical Looping Processes 21 2.2.1 Development of the Iron-Based Oxygen Carriers 23 2.2.2 Development of the Calcium Ferrite Oxygen Carriers 26 2.2.3 Reaction Kinetics Analysis of the Oxygen Carriers 30 2.3 Syngas Generation by using Chemical Looping Processes 35 2.3.1 Conventional Syngas Generation from Fuel Gasification and Reforming 36 2.3.2 Syngas Generation by Moving Bed Reactor 39 2.3.3 High Quality Syngas Production from Chemical Looping Processes 43 2.4 Optimal Operating Parameters for Chemical Looping Processes 45 2.4.1 Effect of Fuel Reactor Temperature 45 2.4.2 Effect of Oxygen Carriers to Solid Fuel Ratio 47 2.4.3 Effect of Gasification Agent Flow Rate 48 Chapter 3 Experimental Apparatus and Procedures 51 3.1 Materials 51 3.2 Apparatus and Instruments 52 3.3 Experimental Procedures 53 3.3.1 Experiment Framework 53 3.3.2 Preparation of Di-Calcium Ferrite Oxygen Carriers 62 3.3.3 System of Chemical Looping Process 63 3.3.4 Characterization Analysis of Di-Calcium Ferrite Oxygen Carriers 72 3.3.5 Method of Analysis RDF and Data Evaluation 75 Chapter 4 Results and Discussion 79 4.1 Oxygen Carriers Preparation 80 4.1.1 Reactivity and Recyclability of Di-Calcium Ferrite Oxygen Carriers 80 4.1.2 Characterization of Di-Calcium Ferrite Oxygen Carriers 84 4.1.3 Crush Strength and Attrition of Di-Calcium Ferrite Oxygen Carriers 88 4.1.4 Reduction Mechanism of Di-Calcium Ferrite Oxygen Carriers 90 4.1.5 Reduction Kinetics Analysis of Di-Calcium Ferrite Oxygen Carriers under Different Fuel Gas Atmosphere 93 4.2 Methane Partial Oxidation with Di-Calcium Ferrite Oxygen Carriers in a Co-Current Moving Bed Reactor 103 4.2.1 Methane Reforming in an Empty Moving Bed Reactor 103 4.2.2 Effect of Fuel Reactor Temperature on Methane Partial Oxidation 108 4.2.3 Effect of Oxygen to CH4 Ratio on Methane Partial Oxidation 115 4.2.4 Effect of Gasification Agent to CH4 Ratio on Methane Partial Oxidation 122 4.3 Refuse-Derived Fuel (RDF) Partial Oxidation with Di-Calcium Ferrite Oxygen Carriers in a Co-Current Moving Bed Reactor 128 4.3.1 RDF Gasification in an Empty Moving Bed Reactor 128 4.3.2 Effect of Fuel Reactor Temperature on RDF Partial Oxidation 132 4.3.3 Effect of Oxygen Carriers to Carbon Ratio on RDF Partial Oxidation 139 4.3.4 Effect of Gasification Agent to Carbon Ratio on RDF Partial Oxidation 145 Chapter 5 Conclusions and Recommendations 151 References 157 Appendix 167 Curriculum Vitae 169

    Bergman, B., “Solid-State Reactions between CaO Powder and Fe2O3,” J. Am. Ceram. Soc., Vol. 69, pp. 608-611 (1986).
    Breault, R, W., “Gasification Processes Old and New: A Basic Review of the Major Technologies,” Energies, Vol. 3, pp. 216-240 (2010).
    Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D., Zeng, L. and Fan, L. S., “Parametric and Dynamic Studies of an Iron-Based 25-kWth Coal Direct Chemical Looping Unit using Sub-Bituminous Coal,” Appl. Energy, Vol. 145, pp. 354-363 (2015).
    Chiu, P. C., Ku, Y., Wu, H. C., Kao, Y. L., Tseng, Y. H., “Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion,” Energy Fuels, Vol. 128, pp. 657-665 (2014a).
    Chiu, P. C., Ku, Y., Wu, H. C., Wu, Y. L., Kao, Y. L., Tseng, Y. H., “Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol and Air Quality Research, Vol. 14, pp. 981-990 (2014b).
    Cheng, Z., Qin, L., Guo, M., Fan, J, A., Xu, D., Fan, L, S., “Methane Adsorption and Dissociation on Iron Oxide Oxygen Carriers: The Role of Oxygen Vacancies,” Phys. Chem., Vol. 18, pp. 16423-16435 (2016a).
    Cheng, Z., Qin, L., Guo, M., Xu, M., Fan, J, A., Fan, L. S., “Oxygen Vacancy Promoted Methane Partial Oxidation over Iron Oxide Oxygen Carriers in the Chemical Looping Process,” Phys. Chem. Chem. Phys., Vol. 18, pp. 32418-32428 (2016b).
    Chen, S., Shi, Q., Xue, Z., Sun, X., Xiang, W., “Experimental Investigation of Chemical-Looping Hydrogen Generation using Al2O3 or TiO2-Supported Iron Oxides in a Batch Fluidized Bed,” Hydrogen Energy, Vol. 36, pp. 8915-8926 (2011).
    Chung, C., Qin, L., Shah, V., Fan, L, S., “Chemically and Physically Robust, Commercially-Viable Iron-Based Composite Oxygen Carriers Sustainable over 3000 Redox Cycles at High Temperatures for Chemical Looping Applications,” Energy Environ. Sci., Vol. 10, pp. 2318-2323 (2017).
    Chen, L., Yang, L., Liu, F., Nikolic, H, S., Fan, Z., Liu, K., “Evaluation of Multi-Functional Iron-Based Carrier from Bauxite Residual for H2-Rich Syngas Production via Chemical-Looping Gasification,” Fuel Process Technol., Vol. 156, pp. 185-194 (2017).
    Chein, R, Y., Hsu, W, H., “Thermodynamic Analysis of Syngas Production via Chemical Looping Dry Reforming of Methane,” Energy, Vol. 180, pp. 535-547 (2019).
    Cuadrat, A., Abad, A., Garcia, F., Gayan, P., Diego, L. F., Adanez, J., “Relevance of the Coal Rank on the Performance of the In Situ Gasification Chemical-Looping Combustion,” J. Chem. Eng., Vol. 195, pp. 91-102 (2012).
    Dornburg, V. and Faaij, A., “Efficiency and Economy of Wood-Fired Biomass Energy Systems in Relation to Scale Regarding Heat and Power Generation Using Combustion and Gasification Technologies,” Biomass Bioenergy, Vol. 21, pp. 91-108 (2001).
    Dai, X, P., Wu, Q., Li, J, R., Yu, C, C., Hao, Z, P., “Hydrogen Production from a Combination of The Water-Gas Shift and Redox Cycle Process of Methane Partial Oxidation via Lattice Oxygen over LaFeO3 Perovskite Catalyst,” Phys. Chem., Vol. 110, pp. 25856-25862 (2006).
    Duan, F., Liu, J., Chyang, C, S., Hu, C, H., Tso, J., “Combustion Behavior and Pollutant Emission Characteristics of RDF (Refuse Derived Fuel) and Sawdust in a Vortexing Fluidized Bed Combustor,” Energy., Vol. 57, pp. 421-426 (2013).
    Dry, M, E, “The Fischer–Tropsch Process: 1950–2000,” Catal. Today, Vol. 71, pp. 227-241 (2002).
    Ding, C., Lv, X., Xuan, S., Tang, K., Bai, C., “Isothermal Reduction Kinetics of Powdered Hematite and Calcium Ferrite with CO–N2 Gas Mixtures,” ISIJ Int., Vol. 56, pp. 2118-2125 (2016).
    Ding, C, G., Lv, X, W., Li. G., Xuan, S., Tang, K., Bai, C, G., Lv, X, M., “Isothermal Reduction of Powdery 2CaO•Fe2O3 and CaO•Fe2O3 under H2 Atmosphere,” Int. J. Hydrogen Energy, Vol. 43, pp. 24-36 (2018).
    Fan, L, S., Zeng, L., Luo, S., “Chemical Looping Technology Platform,” AIChE J., Vol. 61, pp. 2-22 (2015).
    Fan, L, S, “Chemical Looping Partial Oxidation: Gasification, Reforming, and Chemical Syntheses,” Cambridge University Press, (2017).
    Gu, H. M., Shen, L. H., Zhong, Z. P., Niu, X., Liu, W. D., Ge, H. J., Jiang, S. X., Wang, L. L., “Cement/CaO-modified Iron Ore as Oxygen Carrier for Chemical Looping Combustion of Coal,” Appl. Energy, Vol. 157, pp. 314-322 (2015).
    Ge, H., Shen, L, H., Feng, F., Shouxi, J., “Experiments on Biomass Gasification using Chemical Looping with Nickel-Based Oxygen Carrier in a 25 kWth Reactor,” Appl. Therm. Eng., Vol. 85, pp. 52-60 (2015).
    Ge, H., Guo, W., Shen, L, H., Song, T., Xiao, J., “Experimental Investigation on Biomass Gasification using Chemical Looping in a Batch Reactor and a Continuous Dual Reactor,” J. Chem. Eng., Vol. 286, pp. 689-700 (2016a).
    Ge, H., Guo, W., Shen, L., Song, T., Xiao, J., “Biomass Gasification using Chemical Looping in a 25 kWth Reactor with Natural Hematite as Oxygen Carrier,” Chem. Eng. J., Vol. 286, pp. 174-183 (2016b).
    Guo, Q., Cheng, Y., Liu, Y., Jia, W., Ryu, H, J., Chung, C., “Coal Chemical Looping Gasification for Syngas Generation using an Iron-Based Oxygen Carrier,” Ind. Eng. Chem. Res., Vol. 53, pp. 78-86 (2014).
    Gupta, D., G, L., Vargas, V., Chen, Fan, L, S., “Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas,” Energy & Fuels, Vol. 21, pp. 2900-2908 (2007).
    Geldart, D., “Types of Gas Fluidization,” Power Technol, Vol. 7, pp. 285-292 (1973).
    Hsieh, T, L., Zhang, Y., Xu, D., Wang, C., Pickarts, M., Chung, C., Fan, L. S., Tong, A., “Chemical Looping Gasification for Producing High Purity, H2-Rich Syngas in a Cocurrent Moving Bed Reducer with Coal and Methane Cofeeds,” Ind. Eng. Chem. Res., Vol. 57, pp. 2461-2475 (2018).
    Huang, Z., He, F., Feng, Y., Zhao, K., Zhang, A., Chang, S., Li, H., “Synthesis Gas Production through Biomass Direct Chemical Looping Conversion with Natural Hematite as an Oxygen Carrier,” Bioresour. Technol., Vol. 140, pp. 138-145 (2013).
    Huang, Z., He, F., Feng, Y., Zhao, K., Zhang, A., Chang, S., Wei, G., Zhao, Z., Li, H., “Biomass Char Direct Chemical Looping Gasification using NiO-Modified Iron Ore as an Oxygen Carrier,” Energy Fuels, Vol. 28, pp. 183-191 (2014).
    Huang, Z., He, F., Zhu, H., Chen, D., Zhao, K., Wei, G., Feng, Y., Zhang, A., Zhao, Z., Li, H., “Thermodynamic Analysis and Thermogravimetric Investigation on Chemical Looping Gasification of Biomass Char under Different Atmospheres with Fe2O3 Oxygen Carrier,” Appl. Energy, Vol. 157, pp. 546-553 (2015).
    Huang, Z., Zhang, Y., Fu, J., Yu, L., Chen, M., Liu, S., He, F., Chen, D., Wei, G., Zhao, K., Zheng, A., Zhao, Z., Li, H., “Chemical Looping Gasification of Biomass Char using Iron Ore as an Oxygen Carrier,” J. Hydrogen Energy, Vol. 41, pp. 17871-17883 (2016).
    Huang, Z., Shen, Z., “High-Efficiency and Pollution-Controlling In-Situ Gasification Chemical Looping Combustion System by using CO2 Instead of Steam as Gasification Agent,” Chinese J. Chem. Eng., Vol. 26, pp. 2368-2376 (2018).
    Huang, W, C., Kuo, Y, L., Su, Y, M., Tseng, Y, H., Lee, H, Y., Ku, Y., “A Facile Method for Sodium-Modified Fe2O3/Al2O3 Oxygen Carrier by an Air Atmospheric Pressure Plasma Jet for Chemical Looping Combustion Process,” Chem. Eng., Vol. 316, pp. 15-23 (2017).
    Huang, W, C., Kuo, Y, L., Su, P, C., Tseng, Y, H., Lee, H, Y., Ku, Y., “Redox Performance of Na-modified Fe2O3/Al2O3 with Syngas as Reducing Agent in Chemical Looping Combustion Process,” Chem. Eng., Vol. 334, pp. 2079-2087 (2018).
    Huseyin, S., Wei, G., Li, H., He, F., Huang, Z., “Chemical Looping Gasification of Biomass in a 10 kWth Interconnected Fluidized Bed Reactor using Fe2O3/Al2O3 Oxygen Carrier,” J. Fuel Chem. Technol., Vol. 42, pp. 922-931 (2014).
    Ishida, M., Zheng, D., Akehata, T., “Evaluation of A Chemical-Looping Combustion Power-Generation System by Graphic Energy Analysis,” Energy, Vol. 12, pp. 147–154 (1987).
    Ku, Y., Wu, H. C., Chiu, P. C., Tseng, Y. H., Kao, Y. L., “Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen carriers,” Appl. Energy, Vol. 113, pp. 1909-1915 (2014a).
    Ku, Y., Liu, Y. C., Chiu, P. C., Kao, Y. L., Tseng, Y. H., “Mechanism of Fe2TiO5 as Oxygen Carrier for Chemical Looping Process and Evaluation for Hydrogen Generation,” Ceramics Int., Vol. 40, pp. 4599-4605 (2014b).
    Ku, Y., Liu, Y. C., Tseng, Y. H., Kao, Y. L., “Feasibility Study of Fe-Ti Based Oxygen Carriers for Chemical Looping Combustion,” Energy Procedia, Vol. 61, pp. 1398-1401 (2014c).
    Ku, Y., Wu, H. C., Chang, C. W., Shiu, S, H., Tseng, Y. H., Kao, Y. L., “Chemical Looping with Air Separation (CLAS) in a Moving Bed Reactor with CuO/ZrO2 Oxygen Carriers,” J. Greenhouse Gas Control, Vol. 70, pp. 225-235 (2018).
    Kuo, Y, L., Huang, W, C., Tseng, Y, H., Chang, S, H., Ku, Y., “Electric Arc Furnace Dust as an Alternative Low-Cost Oxygen Carrier for Chemical Looping Combustion,” J. Hazardous, Material, Vol. 342, pp. 297-305 (2018).
    Kim, H. R., Wang, D., Zeng, L., Bayham, S., Tong, A., Chung, E., Kathe, M. V., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D., and Fan, L. S., “Coal Direct Chemical Looping Combustion Process: Design and Operation of A 25-kWth Sub-pilot Unit,” Fuel, Vol. 108, pp. 370-384 (2013).
    Kobayashi, N., Fan, L. S., “Biomass Direct Chemical Looping Process: A Perspective,” Biomass Bioenergy, Vol. 35, pp. 1252-1262 (2011).
    Khawam and Flanagan, “Solid-State Kinetic Models:  Basics and Mathematical Fundamentals,” J. Phys. Chem. B, Vol. 110, pp. 17315-17328 (2006).
    Kang, D., Lee, M., Lim, H, S., Lee, W, J., “Syngas Production on a Ni-Enhanced Fe2O3/Al2O3 Oxygen Carrier via Chemical Looping Partial Oxidation with Dry Reforming of Methane,” Appl. Energy, Vol. 211, pp. 174-186 (2018a).
    Kang, D., Lee, M., Lim, H, S., Lee, W, J., “Chemical Looping Partial Oxidation of Methane with CO2 Utilization on the Ceria-Enhanced Mesoporous Fe2O3 Oxygen Carrier,” Fuel, Vol. 215, pp. 787-798 (2018b).
    Kathe, M., Sandvik, P., Fryer, C., Kong, F., Zhang, Y., Grigonis, G., Fan, L, S., “Coal Refining Chemical Looping Systems with CO2 as a Co-Feedstock for Chemical Syntheses,” Energy Fuels, Vol. 32, pp. 1139-1154 (2018).
    Li, F., Kim, H, R., Sridhar, D., Wang, F., Liang, Z., Chen, J., and Fan, L.S., “Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance,” Energy Fuels, Vol. 23, pp. 4182-4189 (2009).
    Li, F., Liang, Z., and Fan, L.S., “Biomass Direct Chemical Looping Process: Process Simulation,” Fuel, Vol. 89, pp. 3773-3784 (2010).
    Li, F., Luo, S., Sun, Z., Bao, X., Fan, L, S., “Role of Metal Oxide Support in Redox Reactions of Iron Oxide for Chemical Looping Applications: Experiments and Density Functional Theory Calculations,” Energy Environ. Sci., Vol. 4, pp. 3661-3667 (2011).
    Luo, S., Majumder, A., Chung, E., Xu, D., Bayham, S., Sun, Z., Zeng, L., Fan, L, S., “Conversion of Woody Biomass Materials by Chemical Looping Process—Kinetics, Light Tar Cracking, and Moving Bed Reactor Behavior,” Ind. Eng. Chem. Res., Vol. 53, pp. 14116-14124 (2013).
    Luo, S., Bayham, S., Zeng, L., McGiveron, O., Chung, E., Majumder, A., Fan, L. S., “Conversion of Metallurgical Coke and Coal using A Coal Direct Chemical Looping (CDCL) Moving Bed Reactor,” Appl. Energy, Vol. 118, pp. 300-308 (2014a).
    Luo, S., Zeng, L., Xu, D., Kathe, M., Chung, E., Chung, E., Deshpande, N., Qin, L., Majumder, A., Hsieh, T. E., Tong, A., Sun, Z., Fan, L. S., “Shale Gas-to-syngas Chemical Looping Process for Stable Shale Gas Conversion to High Purity Syngas with a H2:CO ratio of 2:1,” Energy Environ. Sci., pp. 4104-4117 (2014b).
    Liu, Y., Guo, Q., “Investigation into Syngas Generation from Solid Fuel using CaSO4-Based Chemical Looping Gasification Process,” Chin. J. Chem., Vol. 21, pp. 127-134 (2013).
    Liu, G., Liao, Y., Wu, Y., Ma, X., “Application of Calcium Ferrites as Oxygen Carriers for Microalgae Chemical Looping Gasification,” Energy Conversion and Management, Vol. 160, pp. 262-272 (2018).
    Malysheva, T, Y., and Mansurova, N, R., “Use of Phase Diagrams for the Prediction of the Ferrite and Silicate-Binder Compositions of Fluxed Sinters,” Russian Metallurgy, Vol. 2, pp. 93-98 (2008).
    Qin, L., Cheng, Z., Fan, J, A., Kopechek, D., Xu, D., Deshpande, N., Fan, L, S., “Nanostructure Formation Mechanism and Ion Diffusion in Iron–Titanium Composite Materials with Chemical Looping Redox Reactions,” J. Mater. Chem. A., Vol. 3, pp. 11302-11312 (2015).
    Qin, L., Guo, M., Liu, Y., Cheng, Z., Fan, J., Fan, L. S., “Enhanced Methane Conversion in Chemical Looping Partial Oxidation Systems using a Copper Doping Modification,” Appl. Catal. B: Environ., Vol. 235, pp. 143-149 (2018).
    Ran, J., Fu, F., Qin, C., Zhang, P., Yang, L., Wang, W., Yang, L., “Evaluation of CuO/MgAl2O4 in Biomass Chemical Looping Gasification with Oxygen Uncoupling,” BioResources, Vol. 11, pp. 2109-2123 (2015).
    Sun, Z., Chen, S., Hu, J., Chen, A., Rony, A, H., Russell, C, K., Xiang, W., Fan, M., Dyar, M, D., Dklute, E, C., “Ca2Fe2O5: A Promising Oxygen Carrier for CO/CH4 Conversion and Almost-Pure H2 Production with Inherent CO2 Capture over a Two-Step Chemical Looping Hydrogen Generation Process,” Appl. Energy, Vol. 211, pp. 431-442 (2018).
    Steinfeld, A., Frei, P., Kuhn, P., “Thermoanalysis of The Combined Fe3O4 Reduction and CH4 Reforming Processes,” Metall Mater Trans B, Vol. 26, pp. 509-515 (1995).
    Tseng, Y, H., Ma, J, A., Chin, C, P., Kuo, Y, L., Ku, Y., “Preparation of Composite Nickel–Iron Oxide as Highly Reactive Oxygen Carrier for Chemical-Looping Combustion Process,” Taiwan Institute of Chem. Engineers, Vol. 45, pp. 174-179 (2014).
    Takanabe, K., “Catalytic Conversion of Methane: Carbon Dioxide Reforming and Oxidative Coupling,” J. Japan Petroleum Institute, Vol. 55, pp. 1-12 (2012).
    Wang, L., Weller, C, L., Jones, D, D., Hanna, M, A., “Contemporary Issues in Thermal Gasification of Biomass and Its Application to Electricity and Fuel Production,” Biomass Bioenergy, Vol. 32, pp. 573-581 (2008).
    Wu, H, C., Ku, Y., Tsai, H, H., Kuo, Y, L., Tseng, Y, H., “Rice Husk as Solid Fuel for Chemical Looping Combustion in an Annular Dual-Tube Moving Bed Reactor,” Chem. Eng. J., Vol. 280, pp. 82-89 (2015).
    Wu, H, C., Ku, Y., “Chemical Looping Gasification of Charcoal with Iron-Based Oxygen Carriers in an Annular Dual-Tube Moving Bed Reactor,” Aerosol and Air Quality Research, Vol. 16, pp. 1903-1103 (2016).
    Wu, Y., Liao, Y., Liu, G., Ma, X., “Syngas Production by Chemical Looping Gasification of Biomass with Steam and CaO Additive,” J. Hydrogen Energy, Vol. 43, pp. 19375-19383 (2018).
    Wang, L., Weller, C, L., Jones, D, D., Hanna, M, A., “Contemporary Issues in Thermal Gasification of Biomass and Its Application to Electricity and Fuel Production,” Biomass and Bioenergy, Vol. 32, pp. 573-581 (2008).
    Xu, D., Zhang, Y., Hsieh, T, L., Guo, M., Qin, L., Chung, C., Fan, L. S., Tong, A., “A Novel Chemical Looping Partial Oxidation Process for Thermochemical Conversion of Biomass to Syngas,” Appl. Energy, Vol. 222, pp. 119-131 (2018).
    Yang, W, J., Zhao, H, B., Mei, D, F. Zheng, C, G., “Reactivity and Stability of Cu-Decorated Fe2O3/Al2O3 Oxygen Carrier for Chemical Looping Combustion,” Journal of J. Fuel Chem. Technol., Vol. 42, pp. 121-128 (2014).
    Zeng, J., Xiao, R., Zeng, D., Zhao, Y., Zhang, H., Shen, D., “High H2/CO Ratio Syngas Production from Chemical Looping Gasification of Sawdust in a Dual Fluidized Bed Gasifier,” Energy Fuels, Vol. 30, pp. 1764-1770 (2016).
    Zeng, J., Xiao, R., Zhang, H. Y., Wang, Y. H., Zeng, D. Y., Ma, Z., “Chemical Looping Pyrolysis-Gasification of Biomass for High H2/CO Syngas Production,” Fuel Processing Technol., Vol. 168, pp. 116-122 (2017).
    Zhang, J., He, T., Wang, Z., Zhu, M., Zhang, K., Li, B., Wu, J., “The Search of Proper Oxygen Carriers for Chemical Looping Partial Oxidation of Carbon,” Appl. Energy, Vol. 190, pp. 1119-1125 (2017).
    Zhou, Z., Han, L., Bollas, G., “Kinetics of NiO Reduction by H2 and Ni Oxidation at Conditions Relevant to Chemical-Looping Combustion and Reforming,” International J. Hydrogen Energy, Vol. 39, pp. 8535-8556 (2014).

    無法下載圖示 全文公開日期 2024/07/15 (校內網路)
    全文公開日期 2024/07/15 (校外網路)
    全文公開日期 2024/07/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE